<span>Equation:2H2(g) + O2(g) → 2H2O(g)
</span><span>
Smaller container means less volume, and the molecules will hit the walls of the container more frequently because there's less space available and the pressure will go up. I guess this would mean that the side with fewer moles would be favored as a result. We count the number of moles on the reactants and products and find that there are fewer moles on the product side, so I guess this would favor the product formation.
</span>
The correct answer is A.) dilute
To solve the problem, we assume the sample to be ideal. Then, we use the ideal gas equation which is expressed as PV = nRT. From the first condition of the nitrogen gas sample, we calculate the number of moles.
n = PV / RT
n = (98.7x 10^3 Pa x 0.01 m^3) / (8.314 Pa m^3/ mol K) x 298.15 K
n = 0.40 mol N2
At the second condition, the number of moles stays the same however pressure and temperature was changed. So, the new volume is calculated as follows:
V = nRT / P
V = 0.40 x 8.314 x 293.15 / 102.7 x 10^3
V = 9.49 x 10^-3 m^3 or 9.49 L
3.5 M has 3.5 moles per litre
so we have one litre, so we need 3.5 moles
moles = mass/molarmass
3.5 * 23 = 80.5
Answer:
<em>What can be added to an atom to cause a nonvalence electron in the atom to temporarily become a valence electron </em>is<u><em> energy</em></u><em>.</em>
Explanation:
The normal state of the atoms, where all the electrons are occupying the lowest possible energy level, is called ground state.
The <em>valence electrons</em> are the electrons that occupy the outermost shell, this is the electrons in the highest main energy level (principal quantum number) of the atom.
So, a <em>nonvalence electron</em> occupies an orbital with less energy than what a valence electron does; in consequence, in order to a nonvalence electron jump from its lower energy level to the higher energy level of a valence electron, the former has to absorb (gain) energy.
This new state is called excited state and is temporary: the electron promoted to the higher energy level will emit the excess energy, in the form of light (photons), to come back to the lower energy level and so the atom return to the ground state.