<h3>
Answer:</h3>
1100 mmHg
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Gas Laws</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 1.5 atm
[Solve] mmHg
<u>Step 2: Identify Conversions</u>
1 atm = 760 mmHg
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
1140 mmHg ≈ 1100 mmHg
It reacts with it and creates carbon monoxide and the affects of it weakens
Answer:- 
Explanations:- It is given that the charge for A is +2 and the charge for B is -3. The over all compound is neutral means the over all charge is zero. For making the over all charge zero, we need 3 positive ions and 2 negative ions. This makes a +6 charge for A and -6 charge for B and the over all charge is zero.
Also, if we think about the criss cross then charge of A becomes the subscript of B and the charge of B becomes the subscript of A.
So, the formula of the ionic compound is
. In this compound the ratio of A to B is 3:2.
The balanced equation could be shown as:

Answer:
The molarity (M) of the following solutions are :
A. M = 0.88 M
B. M = 0.76 M
Explanation:
A. Molarity (M) of 19.2 g of Al(OH)3 dissolved in water to make 280 mL of solution.
Molar mass of Al(OH)3 = Mass of Al + 3(mass of O + mass of H)
= 27 + 3(16 + 1)
= 27 + 3(17) = 27 + 51
= 78 g/mole
= 78 g/mole
Given mass= 19.2 g/mole


Moles = 0.246

Volume = 280 mL = 0.280 L

Molarity = 0.879 M
Molarity = 0.88 M
B .The molarity (M) of a 2.6 L solution made with 235.9 g of KBr
Molar mass of KBr = 119 g/mole
Given mass = 235.9 g

Moles = 1.98
Volume = 2.6 L


Molarity = 0.762 M
Molarity = 0.76 M