Answer:
in reading volume - you read from the bottom of the meniscus, which is the curve formed from the liquid in the graduated cylinder. Most graduated cylinders are in ml, so measure in the most accurate reading.
Explanation:
Answer:
[Ni(CN)4]2- square planar
[NiCl4]2- tetrahedral
Explanation:
For a four coordinate complex such as [Ni(CN)4]2- and [NiCl4]2-, we can decide its geometry by closely considering its magnetic properties. Both of the complexes are d8 complexes which could be found either in the tetrahedral or square planar crystal field depending on the nature of the ligand.
CN^- being a strong field ligand leads to the formation of a square planar diamagnetic d8 complex of Ni^2+. Similarly, Cl^- being a weak field ligand leads to the formation a a tetrahedral paramagnetic d8 complex of Ni^+ hence the answer given above.
Answer: The value of equilibrium constant for reaction is,
Explanation:
The given chemical equations are:
(1)
;
(2)
; 
Now we have to calculate the equilibrium constant for chemical equation as:
; 
We are reversing reaction 2 and multiplying reaction 2 by 2 and then adding both reaction, we get the final reaction.
The equilibrium constant for the reverse reaction will be the reciprocal of that reaction.
If the equation is multiplied by a factor of '2', the equilibrium constant of that reaction will be the square of the equilibrium constant.
If we are adding equations then the equilibrium constants will be multiplied.
The value of equilibrium constant for reaction is:

Now put all the given values in this expression, we get:


Hence, the value of equilibrium constant for reaction is,
From the stoichiometry of the balanced reaction equation, the correct statement are;
- For every 1 molecule of methane CH4 that reacts, 2 molecules of H2O are produced.
- For every 20 grams of methane (CH4) that reacts, 40 grams of H2O are produced.
- For every 200 moles of methane (CH4) that reacts, 400 moles of H2O are produced.
<h3>What is combustion?</h3>
The term combustion refers to the burning of fossil fuels for the purpose of energy production. The equation for reaction is CH4 + 2O2 ---> CO2 + 2H2O.
Using this equation as shown, the true statements are;
- For every 1 molecule of methane CH4 that reacts, 2 molecules of H2O are produced.
- For every 20 grams of methane (CH4) that reacts, 40 grams of H2O are produced.
- For every 200 moles of methane (CH4) that reacts, 400 moles of H2O are produced.
Learn more about combustion: brainly.com/question/15117038