Answer:
<u>The standard enthalpy of reaction = -4854.7kJ</u>
<u>The difference: </u>ΔH-ΔE = Δ(PV) = Δn.R.T = <u>9910.288 J ≈ 9.91 kJ</u>
Explanation:
<u>The balanced chemical equation for the combustion of heptane</u>:
C₇H₁₆ (l) + 11 O₂ (g) → 7 CO₂ (g) + 8 H₂O (l)
Given: The standard enthalpy of formation (
) for: C₇H₁₆ (l) = -187.8 kJ/mol, O₂ (g) = 0 kJ/mol, CO₂ (g) = -393.5 kJ/mol, H₂O (l) = -286 kJ/mol
<u>To calculate the standard enthalpy of reaction (
) can be calculated by the Hess's law</u>:
![\Delta H _{r}^{\circ } = \left [\sum \nu \cdot\Delta H _{f}^{\circ }(products) \right ] - \left [\sum \nu\cdot\Delta H _{f}^{\circ }(reactants) \right ]](https://tex.z-dn.net/?f=%5CDelta%20H%20_%7Br%7D%5E%7B%5Ccirc%20%7D%20%3D%20%5Cleft%20%5B%5Csum%20%5Cnu%20%5Ccdot%5CDelta%20H%20_%7Bf%7D%5E%7B%5Ccirc%20%7D%28products%29%20%20%5Cright%20%5D%20-%20%5Cleft%20%5B%5Csum%20%5Cnu%5Ccdot%5CDelta%20H%20_%7Bf%7D%5E%7B%5Ccirc%20%7D%28reactants%29%20%20%5Cright%20%5D)
Here,
is the stoichiometric coefficient
⇒ ![\Delta H _{r}^{\circ } =](https://tex.z-dn.net/?f=%5CDelta%20H%20_%7Br%7D%5E%7B%5Ccirc%20%7D%20%3D)
![\left [ 7\times \Delta H _{f}^{\circ }\left (CO_{2}\right )+ 8\times \Delta H _{f}^{\circ }\left (H_{2}O \right )\right ]](https://tex.z-dn.net/?f=%5Cleft%20%5B%207%5Ctimes%20%5CDelta%20H%20_%7Bf%7D%5E%7B%5Ccirc%20%7D%5Cleft%20%28CO_%7B2%7D%5Cright%20%29%2B%208%5Ctimes%20%5CDelta%20H%20_%7Bf%7D%5E%7B%5Ccirc%20%7D%5Cleft%20%28H_%7B2%7DO%20%5Cright%20%29%5Cright%20%5D)
![- \left [1\times \Delta H _{f}^{\circ }\left (C_{7}H_{16}\right ) +11\times \Delta H _{f}^{\circ }\left (O_{2} \right ) \right ]](https://tex.z-dn.net/?f=-%20%5Cleft%20%5B1%5Ctimes%20%5CDelta%20H%20_%7Bf%7D%5E%7B%5Ccirc%20%7D%5Cleft%20%28C_%7B7%7DH_%7B16%7D%5Cright%20%29%20%2B11%5Ctimes%20%5CDelta%20H%20_%7Bf%7D%5E%7B%5Ccirc%20%7D%5Cleft%20%28O_%7B2%7D%20%5Cright%20%29%20%5Cright%20%5D)
![=\left [ 7\times \left (-393.5 kJ/mol \right )+ 8\times \left (-286 kJ/mol \right )\right ]](https://tex.z-dn.net/?f=%3D%5Cleft%20%5B%207%5Ctimes%20%5Cleft%20%28-393.5%20kJ%2Fmol%20%5Cright%20%29%2B%208%5Ctimes%20%5Cleft%20%28-286%20kJ%2Fmol%20%5Cright%20%29%5Cright%20%5D)
![-\left [1\times \left (-187.8 kJ/mol \right ) +11\times \left (0 kJ/mol \right ) \right ]](https://tex.z-dn.net/?f=-%5Cleft%20%5B1%5Ctimes%20%5Cleft%20%28-187.8%20kJ%2Fmol%20%5Cright%20%29%20%2B11%5Ctimes%20%5Cleft%20%280%20kJ%2Fmol%20%5Cright%20%29%20%5Cright%20%5D)
⇒ ![\Delta H _{r}^{\circ } = \left [ \left (-2754.5 \right )+ \left (-2288 \right )\right ]\left -[ \left (-187.8 \right ) +\left (0 \right )\right ]](https://tex.z-dn.net/?f=%5CDelta%20H%20_%7Br%7D%5E%7B%5Ccirc%20%7D%20%3D%20%5Cleft%20%5B%20%5Cleft%20%28-2754.5%20%5Cright%20%29%2B%20%5Cleft%20%28-2288%20%5Cright%20%29%5Cright%20%5D%5Cleft%20-%5B%20%5Cleft%20%28-187.8%20%5Cright%20%29%20%2B%5Cleft%20%280%20%5Cright%20%29%5Cright%20%5D)
⇒ ![\Delta H _{r}^{\circ } = \left [ -5042.5 ]\left -[ -187.8] = \left ( -4854.7kJ \right )](https://tex.z-dn.net/?f=%5CDelta%20H%20_%7Br%7D%5E%7B%5Ccirc%20%7D%20%3D%20%5Cleft%20%5B%20-5042.5%20%5D%5Cleft%20-%5B%20-187.8%5D%20%3D%20%5Cleft%20%28%20-4854.7kJ%20%5Cright%20%29)
<u>To calculate the difference: </u>ΔH-ΔE=Δ(PV)
We use the ideal gas equation: P.V = n.R.T
⇒ ΔH-ΔE=Δ(PV) = Δn.R.T
Given: Temperature:T = 298K, R = 8.314 J⋅K⁻¹⋅mol⁻¹
Δn = number of moles of gaseous products - number of moles of gaseous reactants = (7)- (11) = (-4)
⇒ ΔH-ΔE=Δ(PV) = Δn.R.T = (-4 mol) × (8.314 J⋅K⁻¹⋅mol⁻¹) × (298K) = <u>9910.288 J = 9.91 kJ</u> (∵ 1 kJ = 1000J )