Molarity=Moles of solute/Volume of solution in L
So
- 0.56M=moles/2.5L
- moles=0.56(2.5)
- moles of Iodine=1.4mol
Mads of Iodine
- Moles(Molar mass)
- 1.4(126.9)
- 177.66g
Answer:
D. Many, many years of deposition
Explanation:
The layers of the rocks in one region of the parks are smooth and distinct, which are evidence of many, many years of deposition.
The layers on the rocks are because of different deposition of sediments. Different sediments deposited over the rocks through wind, water and ice over the ages.
Hence, the correct answer is D.
Answer:
Option A. It has stayed the same.
Explanation:
To answer the question given above, we assumed:
Initial volume (V₁) = V
Initial temperature (T₁) = T
Initial pressure (P₁) = P
From the question given above, the following data were:
Final volume (V₂) = 2V
Final temperature (T₂) = 2T
Final pressure (P₂) =?
The final pressure of the gas can be obtained as follow:
P₁V₁/T₁ = P₂V₂/T₂
PV/T = P₂ × 2V / 2T
Cross multiply
P₂ × 2V × T = PV × 2T
Divide both side by 2V × T
P₂ = PV × 2T / 2V × T
P₂ = P
Thus, the final pressure is the same as the initial pressure.
Option A gives the correct answer to the question.
I believe the correct response is A. At higher elevations it would take less time to hard boil an egg, because there is less atmospheric pressure.
Average kinetic energy of a particle :
0.5 mv^2 = kT/2
so the kinetic energy = kT/2
assuming the same value of K
T1 = -49 + 273 = 224
T2 = 287 + 273 = 560
E2 / E1 = kT2 / 2 / kT1 / 2
E2 / E1 = T2 / T1
E2 / E1 = 560 / 224 = 2.5
so the average kinetic energy of the particle increases by 2.5