The bond dipole moment<span> uses the idea of </span>electric dipole moment<span> to measure the </span>polarity<span> of a chemical bond within a </span>molecule<span>. It occurs whenever there is a separation of positive and negative charges. In the diagram above, option B exhibited a bond dipole moment. I hope this helps.</span>
<span>because it is a pattern; airgo cycle</span>
A compound<span> is a </span>molecule<span> that contains at least two different elements. </span>All compounds<span> are </span>molecules<span> but not </span>all molecules<span> are </span>compounds<span>. </span>Molecularhydrogen (H2<span>), </span>molecular<span> oxygen (O</span>2<span>) and </span>molecular<span> nitrogen (N</span>2) are notcompounds<span> because each is composed of a single element.</span>
NaOH+HCl-> NaCl+H2O
1 mole of NaOH
1 mole of HCl.
To calculate volume of NaOH
CaVa/CbVb= Na/Nb
Where Ca=2M
Cb=1M
Va=200cm³
Vb=xcm³
Substitute into the equation.
2×200/1×Vb=1/1
400/Vb=1/1
Cross multiply
Vb×1=400×1
Vb=400cm³
To calculate the mass of sodium chloride, NaCl from the neutralization rxn.
Mole of NaCl=1
Molar mass of NaCl= 23+35.5=58.5
Mass=xgrammes.
Mass of NaCl=Number of moles × Molar mass.
Substitute
Mass of NaCl= 1×58.5
=58.5g
This is what I could come up with.
Answer:
Hence, the wavelength of the photon associated is 1282 nm.
Explanation: