Answer:
Here's what I find.
Explanation:
An indicator is usually is a weak acid in which the acid and base forms have different colours. Most indicators change colour over a narrow pH range.
(a) Litmus
Litmus is red in acid (< pH 5) and blue in base (> pH 8).
This is a rather wide pH range, so litmus is not much good in titrations.
However, the range is which it changes colour includes pH 7 (neutral), so it is good for distinguishing between acids and bases.
(b) Phenolphthalein
Phenolphthalein is colourless in acid (< pH 8.3) and red in base (> pH 10).
This is a narrow pH range, so phenolphthalein is good for titrating acids with strong bases..
However, it can't distinguish between acids and weakly basic solutions.
It would be colourless in a strongly acid solution with pH =1 and in a basic solution with pH = 8.
(c) Other indicators
Other acid-base indicators have the general limitations as phenolphthalein. Most of them have a small pH range, so they are useful in acid-base titrations.
The only one that could serve as a general acid-base indicator is bromothymol blue, which has a pH range of 6.0 to 7.6.
Answer:
Molecular formula: S4K8O16 empirical formula: SK2O4
Explanation:
First we find the moles of each by first finding grams (using the percent) and then using stoichiometry to convert into moles:
Sulfur: 696 *.18 = 125.28grams S* 
Potassium: 696 *.4487 = 312.2952 *
= 7.99117 mole K
Oxygen: 696 * .367 = 255.432 *
= 15.9654 mole O
Then we divide each value by the atom with the smallest number of moles to find the mole ratio:
3.907/3.907= 1
7.99117 mole K/ 3.907= 2.043
15.9654 mole O/ 3.907= 4.08
The empirical formula is SK2O4
To find the molecular formula, we divide the mass given (696) by the mass of the empirical formula (174.22) to get 4. We then divide each atom by 4.
Molecular formula: S4K8O16
Answer:
Metallic bonding is the type of chemical bonding that occurs between atoms of metals. In a metallic bond, atoms share their electrons in a way that allows them to form a “sea” of free electrons. This electron sea is responsible for the unique physical and electrical properties of metals.
Explanation:
Answer:
Common ones are Gasoline, Diesel fuel, and Kerosene.
Explanation:
Many accelerants are hydrocarbon-based fuels, sometimes referred to as petroleum distillates: gasoline, diesel fuel, kerosene, turpentine, butane, and various other flammable solvents. These accelerants are also known as ignitable liquids. Ignitable liquids can leave behind tell-tale marks in the fire debris.
Hoped this had helped you :)
Answer:
It is the process in which a known amount of solution of known concentration is added to the concentration of the another solution to determine the concentration of unknown solution.
Explanation: