1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tju [1.3M]
3 years ago
14

Is mechanical energy conserved as a playground swing moves? Why or why not?​

Physics
1 answer:
Lynna [10]3 years ago
6 0

Answer:NO

Explanation:

No, because as it swings it is mechanical energy that changes from almost completely potential energy to almost completely kinetic energy and thermal and sound.

You might be interested in
The main purpose of an air bag is to stop a passenger during a car accident in a greater amount of time than if the air bag were
Simora [160]

Answer:

a) 45571 N  

b) 22786 N

c) 4557 N

Explanation:

  • Since the goal of the airbag is helping the person to stop after the collision in a greater time, this means that the change in momentum must finish when this is just zero.
  • In other words, the change in momentum, must be equal to the initial one, but with opposite sign.

       \Delta p = - p_{o} = -m*v = -55 kg*29m/s = -1595 kgm/s (1)

  • Now, just applying the original form of  Newton's 2nd Law, we know that this change in momentum must be equal to the impulse needed to stop the person:

       \Delta p = F* \Delta t  (2)

  • So, as we know the magnitude of Δp from (1) and we have different Δt as givens, we can get the different values of F (in magnitude) required to stop the person for each one of them, as follows:

       F_{1} = \frac{\Delta p}{\Delta t_{1}} = \frac{1595kgm/s}{0.035s} = 45571 N (3)

       F_{2} = \frac{\Delta p}{\Delta t_{2}} = \frac{1595kgm/s}{0.07s} = 22786 N (4)

       F_{3} = \frac{\Delta p}{\Delta t_{3}} = \frac{1595kgm/s}{0.35s} = 4557 N (5)

4 0
3 years ago
What is the unit for height
juin [17]
The unit of height is:
Feet
Inches
Centimeters 

5 0
3 years ago
Read 2 more answers
Lucas left a metal bowl and a wooden bowl outside overnight. The next morning, he picked up the bowls to bring them inside. He n
kipiarov [429]

Answer: C. Metal transfers heat away from the skin by conduction, creating the sensation of coolness.

Explanation: The skin releases heat into the metal bowl since there is a difference in temperature between the two objects. So heat is taken away from the hand abd transfers into the metal bowl by conduction creating a cooler sensation.

8 0
3 years ago
A uniform plank of mass 10kg and length 10m rests on two supports, A and B as shown. A boy of weight 500N stands at a distance o
kifflom [539]

Answer:

U² = 142.86 N

U¹ = 357.14 N

Explanation:

Taking summation of the moment about point A, we get the following equilibrium equation: (taking clockwise direction as positive)

W(2\ m) - U^2(7\ m) = 0

where,

W = weight of boy = 500 N

U² = reaction ay B = ?

Therefore,

(500\ N)(2\ m)-(U^2)(7\ m)=0\\U^2=\frac{1000\ Nm}{7\ m}\\

<u>U² = 142.86 N</u>

Now, taking summation of forces on the plank. Taking upward direction as positive, for equilibrium position:

W-U^1-U^2=0\\500\ N - 142.86\ N = U^1\\

<u>U¹ = 357.14 N</u>

3 0
3 years ago
A certain copper wire has a resistance of 13.0 Ω . At some point along its length the wire was cut so that the resistance of one
alekssr [168]

Answer with Explanation:

Let r be the resistance of short piece of copper wire.

Resistance of copper wire=R=13\Omega

Resistance is directly proportional to length.

If a wire has greater resistance then,the wire will be greater in length.

Therefore,resistance of long piece of wire=7r

Total resistance of copper  wire=Sum of resistance of two piece of wires

r+7r=13

8r=13

r=\frac{13}{8}ohm

Resistance of long piece of wire=7\times\frac{13}{8}=\frac{91}{8}\Omega

Resistance of short piece of wire =\frac{13}{8}\Omega

Resistivity of wire and cross section area of wire remains same .

Let L be the total  length  of wire and L' be the length of short  piece of wire.

We know that

R=\frac{\rho L}{A}=\frac{\rho}{A}L=KL

\frac{R}{L}=K

Where K=\frac{\rho}{A}=Constant

Using the formula

\frac{13}{L}=\frac{\frac{13}{8}}{L'}

\frac{L'}{L}=\frac{13}{8}\times \frac{1}{13}=\frac{1}{8}

L'=\frac{L}{8}

Length of short piece of wire=L'=\frac{L}{8}

Length of long piece of  wire=L-L'=L-\frac{L}{8}=\frac{8L-L}{8}=\frac{7}{8}L

% of length of short piece of   wire=\frac{\frac{L}{8}}{L}\times 100=12.5%%

The resistance of the short piece=\frac{13}{8}\Omega

The resistance of the long piece=\frac{91}{8}\Omega

8 0
3 years ago
Other questions:
  • 4. What happens during fertilization that makes the offspring unique from the original cells?
    5·1 answer
  • Most of earth's atmosphere is composed of
    12·1 answer
  • A toaster uses 6700 joules of energy in 45 seconds to toast to a piece of bread what is power of the oven
    6·1 answer
  • A 98-kg fullback, running at 5.0 m/s, attempts to dive directly across the goal line for a touchdown. Just as he reaches the lin
    12·1 answer
  • A ball is rolling along at speed v without slipping on a horizontal surface when it comes to a hill that rises at a constant ang
    7·1 answer
  • The driver of a car slams on the brakes, causing the car to slow down at a rate of
    5·1 answer
  • Gina is driving her car down the street. She has a teddy bear sitting on the back seat. A dog runs in front of Gina's car, so sh
    11·1 answer
  • Please help on this one? PLEASE.
    15·1 answer
  • During the course of a demonstration the professor is called away. When he returns he finds a beaker of water that was at room t
    10·1 answer
  • 10. CALCULATE: Find the amount of power used in each of the following examples. Show your calculations. a. You use a force of 10
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!