Here's the formula for the distance covered by an accelerating body in some amount of time ' T '. This formula is incredibly simple but incredibly useful. It pops up so often in Physics that you really should memorize it:
D = 1/2 a T²
Distance = (1/2)·(acceleration)·(time²)
This question gives us the acceleration and the distance, and we want to find the time.
(9,000 m) = (1/2) (20 m/s²) (time²)
(9,000 m) = (10 m/s²) (time²)
Divide each side by 10 m/s²:
(9,000 m) / (10 m/s²) = (time²)
900 s² = time²
Square root each side:
<em>T = 30 seconds</em>
The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.
<h3>How can the height of a dropped ball be determined?</h3>
Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.
A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.
The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.
To Learn more About potential energy, Refer:
brainly.com/question/14427111
#SPJ10
Answer:
Acceleration
Explanation:
Acceleration is the rate of change in velocity
speed is how fast an object is moving
Velocity is how fast an object is moving in the particular direction
pls mark me brainliest
Answer:
1, When Jane brakes, the brakes slow the car wheels turning and the road surface exerts a backwards force on the tires, causing the car to decelerate. The pocket book tends to continue on in a straight line (Newton's first law). If she brakes hard enough that the friction between the book and the car seat is insufficient to decelerate the book as fast as the car is decelerating, the book will slide off the seat, and gravity pulls it to the floor
2.
When the diver uses his / her force to depress the springboard, the springboard pushes him back with equal force
3.Newton's Second Law (F=ma)
4. 5 N
5. 19.5 N
65kg * 0.3 m/s^2
6.0.2 N/s
10kg divided by 2N
7.-Walking then pushing the moving forward
-Dribbling
-Basketball is pushed but bounces back
Explanation: