Answer:
5×10⁵ L of ammonia (NH3)
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N2 + 3H2 —> 2NH3
From the balanced equation above, we can say that:
3 L of H2 reacted to produce 2 L of NH3.
Finally, we shall determine the volume of ammonia (NH3) produced by the reaction of 7.5×10⁵ L of H2. This can be obtained as illustrated below:
From the balanced equation above,
3 L of H2 reacted to produce 2 L of NH3.
Therefore, 7.5×10⁵ L of H2 will react to produce = (7.5×10⁵ × 2)/3 = 5×10⁵ L of NH3.
Thus, 5×10⁵ L of ammonia (NH3) is produced from the reaction.
Answer: 0.25m/s2
Explanation:
Acceleration is change in velocity with time
V = final velocity = 5m/s
U =Initial velocity = 3m/s
t = time = 8s
a = Acceleration =?
a = V — U / t
a = (5 — 3) / 8
a = 2/8
a = 0.25m/s2
A mutation that gives a rabbit a third ear
Answer:
2l- ---> l2 + 2e- is the anode
2H+ + 2e- ---> H2(g) is the cathode
Explanation:
Oxidation occurs when a metal loses two or more electrons in a redox chemical reaction and reduction is when it gains. Thus, oxidation is the anode and reduction is the cathode.
The amount of HCl required for one experiment - 13.5 µl
the volume in terms of L - 13.5 x 10⁻⁶ L
the volume of HCl available - 0.250 L
since one experiment uses up - 13.5 x 10⁻⁶ L
then number of experiments - 0.250 L / 13.5 x 10⁻⁶ L = 1.8 x 10⁴ times
the experiment can be carried out 18000 times