The correct answer is cyanate.
The polyatomic ion with the formula CN⁻ is called cyanate. A polyatomic ion has two or more atoms bonded together.
CN⁻ contains the cyano functional group wherein a carbon atom forms a triple-bond to a nitrogen atom. CN⁻ is a polyatomic anion that is present in inorganic compounds.
Answer:
0.129 L = 129.0 mL.
Explanation:
- NaOH neutralizes acetic acid (CH₃COOH) according to the balanced reaction:
<em>NaOH + CH₃COOH → CH₃COONa + H₂O. </em>
- According to the balanced equation: 1.0 mole of NaOH will neutralize 1.0 mole of CH₃COOH.
<em>no. of moles of CH₃COOH = mass/molar mass </em>= (2.0 g)/(60 g/mol) = <em>0.033 mole. </em>
<em>
</em>
no. of moles = (0.258 mol/L)(V)
- At neutralization: no. of moles of NaOH = no. of moles of CH₃COOH
∴ (0.258 mol/L)(V) = 0.033 mole
<em>∴ The volume of NaOH</em> = (0.033 mole)/(0.258 mol/L) = <em>0.129 L = 129.0 mL.</em>
Answer:
<h2>0.17 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
We have

We have the final answer as
<h3>0.17 moles</h3>
Hope this helps you
Answer:
4.0 moles
Explanation:
The following data were obtained from the question:
Volume (V) = 12L
Pressure = 5.6 atm
Temperature (T) = 205K
Gas constant (R) = 0.08206 atm.L/Kmol
Number of mole (n) =?
Using the ideal gas equation: PV = nRT, the number of mole of the gas can be obtained as follow
PV = nRT
5.6 x 12 = n x 0.08206 x 205
Divide both side by 0.08206 x 205
n = (5.6 x 12)/(0.08206 x 205)
n = 4.0 moles
Therefore, the number of mole of the gas is 4.0 moles
According to the law of conservation of mass, what is the same on both sides of a balanced chemical equation?
A. the volume of the substances
B. the subscripts
C. the total mass of atoms
D. the coefficients
Answer:
A balanced equation demonstrates the conservation of mass by having the same number of each type of atom on both sides of the arrow.
Explanation:
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ... Use coefficients of products and reactants to balance the number of atoms of an element on both sides of a chemical equation.
Consider the balanced equation for the combustion of methane.
CH
4
+
2O
2
→
CO
2
+
2H
2
O
All balanced chemical equations must have the same number of each type of atom on both sides of the arrow.
In this equation, we have 1
C
atom, 4
H
atoms, and 4
O
atoms on each side of the arrow.
The number of atoms does not change, so the total mass of all the atoms is the same before and after the reaction. Mass is conserved.
Here is a video that discusses the importance of balancing a chemical equation.