You need to explain it more simple as everyone is clueless
Answer:
γ
=0.01, P=248 kN
Explanation:
Given Data:
displacement = 2mm ;
height = 200mm ;
l = 400mm ;
w = 100 ;
G = 620 MPa = 620 N//mm²; 1MPa = 1N//mm²
a. Average Shear Strain:
The average shear strain can be determined by dividing the total displacement of plate by height
γ
= displacement / total height
= 2/200 = 0.01
b. Force P on upper plate:
Now, as we know that force per unit area equals to stress
τ = P/A
Also, τ = Gγ
By comapring both equations, we get
P/A = Gγ
------------ eq(1)
First we need to calculate total area,
A = l*w = 400 * 100= 4*10^4mm²
By putting the values in equation 1, we get
P/40000 = 620 * 0.01
P = 248000 N or 2.48 *10^5 N or 248 kN
Answer: yes
Explanation: ontop of a tall building, you drop a small peace of metal covered in zinc. it is possible to be very dangerus because of gravity. some one walking on the side walk who gets hit in the head can get a concusion maybe even a brain injury.
Answer: mets
Explanation: meets are good
Answer:
a) The Net power developed in this air-standard Brayton cycle is 43.8MW
b) The rate of heat addition in the combustor is 84.2MW
c) The thermal efficiency of the cycle is 52%
Explanation:
To solve this cycle we need to determinate the enthalpy of each work point of it. If we consider the cycle starts in 1, the air is compressed until 2, is heated until 3 and go throw the turbine until 4.
Considering this:




Now we can calculate the enthalpy of each work point:
h₁=281.4KJ/Kg
h₂=695.41KJ/Kg
h₃=2105KJ/Kg
h₄=957.14KJ/Kg
The net power developed:

The rate of heat:

The thermal efficiency:
