<h2>
Answer:</h2>
1.77V
<h2>
Explanation:</h2>
The electromotive force voltage (E) in a cell, is related to the lost voltage (
) and the terminal voltage (
) as follows;
E =
- 
Where;
The lost voltage (
) is the product of the internal resistance (r) of the cell and current (I) in the cell. i.e
= I x r
<em>Substitute </em>
<em> = I x r into equation (i) as follows;</em>
E =
- (I x r) ----------------------(ii)
<em>According to the question;</em>
E = 1.54V
I = 2.15A
r = 0.105Ω
<em>Substitute these values into equation(ii) as follows;</em>
1.54 =
- (2.15 x 0.105)
1.54 =
- (0.22575)
1.54 =
- 0.22575
<em>Solve for </em>
<em>;</em>
= 1.54 + 0.22575
= 1.54 + 0.22575
= 1.77V
Therefore, the terminal voltage of the cell is 1.77V
Sir Isaac Newton, held the theory that light was made up of tiny particles<span>. In 1678, Dutch physicist, Christiaan Huygens, believed that light was made up of </span>waves<span>vibrating up and down </span>perpendicular<span> to the direction of the light travels, and therefore formulated a way of visualising wave propagation.</span>
True
The more the number of shells will let go of their outer electrons more easily because the effective nuclear charge on the outer (valence) electrons will be lower. This is called 'shielding', the outer electrons will be shielded from the nucleus by the inner electrons.
Hope this Helps
The are elements on the periodic table
Answer: Angle 59 degree
Explanation: Given that the
n1 = 1.0
n2 = 1.5
Øi = 35 degree
From Snell law, which says that
n1/n2 = sinØ1/ sinØ2
Substitute all the parameters into the formula
1/1.5 = sin 35/sinØ2
Cross multiply
Sin Ø2 = 1.5 sin35
SinØ2 = 1.5 × 0.573 = 0.860
Ø2 = sin^-1(0.860)
Ø2 = 59.36 degree
Ø2 = 59 degree ( approximately)
It has angle 59 degree when passing from air to glass