Answer:
102g of crystals
Explanation:
When the Cr(NO₃)₃⋅9H₂O is dissolved in water at 15°C, the maximum mass that water will dissolve in the equilibrium is 208 g per 100g of water. When you heat the water, this mass will increases.
In this problem, at 35°C the water dissolves 310g in 100g of water, as in the equilibrium at 15°C the maximum mass is 208g, the mass of crystals that will form is:
310g - 208g = <em>102g of crystals</em>
<em>-Crystals are the Cr(NO₃)₃⋅9H₂O that is not dissolved-.</em>
I hope it helps!
A carbohydrate comes from a chain of carbon atoms with an H2O associated with each other
Answer:
V KOH = 41 mL
Explanation:
for neutralization:
- ( V×<em>C </em>)acid = ( V×<em>C </em>)base
∴ <em>C </em>H2SO4 = 0.0050 M = 0.0050 mol/L
∴ V H2SO4 = 41 mL = 0.041 L
∴ <em>C</em> KOH = 0.0050 N = 0.0050 eq-g/L
∴ E KOH = 1 eq-g/mol
⇒ <em>C</em> KOH = (0.0050 eq-g/L)×(mol KOH/1 eq-g) = 0.0050 mol/L
⇒ V KOH = ( V×<em>C </em>) acid / <em>C </em>KOH
⇒ V KOH = (0.041 L)(0.0050 mol/L) / (0.0050 mol/L)
⇒ V KOH = 0.041 L
Answer:

Explanation:
Hello there!
In this case, according to the given information of the solubility of copper chloride, as the maximum amount of this salt one can dissolve without having a precipitate, we infer that since just 73 grams are actually dissolved, the following amount will remain solid as a precipitate:

Best regards!