Answer:
The solutions of hydrobromic acid and of chloric acid are the most electrically conductive.
Explanation:
The electrical conductivity of a solution is determined by the concentration of ions in the solution. The acids listed react with water to form ions. In the case of hydrobromic acid, for example, the reaction is as follows:
HBr + H2O >> H3O(+) + Br(-)
Hydrobromic acid and chloric acid are strong acids, meaning the reaction is considered to proceed at 100%. Acetic acid, however, is a weak acid and the reaction with water does not go to completion, so there are less ionic species in the solution of acetic acid, which makes it less electrically conductive.
Answer is: 55.125 grams <span>of propane must be burned.
</span>Balanced chemical reaction: C₃H₈ + 5O₂ → 3CO₂ + 4H₂O.
Make proportion: 1 mol(C₃H₈) : 2220 kJ = n(C₃H₈) : 2775kJ.
n(C₃H₈) = 2775 kJ·mol ÷ 2220 kJ.
n(C₃H₈) = 1.25 mol.
m(C₃H₈) = n(C₃H₈) · M(C₃H₈).
m(C₃H₈) = 1.25 mol · 44.1 g/mol.
m(C₃H₈) = 55.125 g.
n - amount of substance.
<h3><u>Answer;</u></h3>
= 9.45 × 10^23 molecules
<h3><u>Explanation; </u></h3>
The molar mass of Na2SO4 = 142.04 g/mol
Number of moles = mass/molar mass
= 223/142.04
= 1.57 moles
But;
1 mole = 6.02 × 10^23 molecules
Therefore;
1.57 moles = ?
= 1.57 × 6.02 × 10^23 molecules
<u>= 9.45 × 10^23 molecules </u>
From start:
Joule, J, calorie,
Example 1: 120 J / 4.184 = 28.68 cal
Example 2: 1200 cal * 4.184 = 5020.8 J
Answer:
A reaction in which the entropy of the system decreases can be spontaneous only if it is exothermic.
Explanation:
The spontaneity of a reaction depends on the Gibbs free energy(ΔG).
- If ΔG < 0, the reaction is spontaneous.
- If ΔG > 0, the reaction is nonspontaneous.
ΔG is related to the enthalpy (ΔH) and the entropy (ΔS) through the following expression:
ΔG = ΔH - T.ΔS
where,
T is the absolute temperature (always positive)
Regarding the exchange of heat:
- If ΔH < 0, the reaction is exothermic.
- If ΔH > 0, the reaction is endothermic.
<em>Which statement is true? </em>
<em>A reaction in which the entropy of the system decreases can be spontaneous only if it is exothermic. </em>TRUE. If ΔS < 0, the term -T.ΔS > 0. ΔG can be negative only if ΔH is negative.
<em>A reaction in which the entropy of the system increases can be spontaneous only if it is endothermic.</em> FALSE. If ΔS > 0, the term -T.ΔS < 0. ΔG can be negative if ΔH is negative.
<em>A reaction in which the entropy of the system decreases can be spontaneous only if it is endothermic.</em> FALSE. If ΔS < 0, the term -T.ΔS > 0. ΔG cannot be negative if ΔH is positive.
<em>A reaction in which the entropy of the system increases can be spontaneous only if it is exothermic.</em> FALSE. If ΔS > 0, the term -T.ΔS < 0. ΔG can be negative even if ΔH is positive, as long as |T.ΔS| > |ΔH|.