1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
umka2103 [35]
3 years ago
10

Andrew pokes a marble, and the marble rolls down a ramp. The marble moves with speed. Which forces are acting on the marble in t

his situation?
Physics
2 answers:
stich3 [128]3 years ago
4 0
The forces are Andrew poking the marble and then gravity pulling the marble downward
Lera25 [3.4K]3 years ago
3 0

Answer:

1. an applied force  2. gravitational  3.friction

Explanation:

Took it on Plato :)))

You might be interested in
While a constant total force of 17 n is exerted on a cart, the cart's acceleration is 5 m/s2. find the mass of the cart?
zaharov [31]
F = mass × acceleration
17 = mass × 5
mass = 17/5
6 0
3 years ago
Which is a FALSE statement about elements? Select one: a. Each element has its own neutron number. b. Each element has its own a
Nata [24]
It is A. Number of neutrons can differ with and be the same any given element.
3 0
3 years ago
I need these for test corrections that are due tomorrow please :)
Ivahew [28]
That would be position Y, as the northern hemisphere is tilted away from the sun.
6 0
3 years ago
A 1.5 kg orange falls from a tree and hits the ground in 0.75s. What is the speed of the orange just before it hits the ground?
Olenka [21]

The final speed of the orange is 7.35 m/s

Explanation:

The motion of the orange is a free fall motion, since there is only the force of gravity acting on it. Therefore, it is a uniformly accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. So we can use the following suvat equation:

v=u+at

where

v is the  final velocity

u is the initial velocity

a is the acceleration

t is the time elapsed

For the orange in this problem, we have

u = 0 (it is dropped from rest)

a=g=9.8 m/s^2 is the acceleration

Substituting t = 0.75 s, we find the final velocity (and speed) of the orange:

v=0+(9.8)(0.75)=7.35 m/s

Learn more about free fall:

brainly.com/question/1748290

brainly.com/question/11042118

brainly.com/question/2455974

brainly.com/question/2607086

#LearnwithBrainly

8 0
3 years ago
A 190 g glider on a horizontal, frictionless air track is attached to a fixed ideal spring with force constant 160 N/m. At the i
laiz [17]

(a) Let <em>x</em> be the maximum elongation of the spring. At this point, the glider would have zero velocity and thus zero kinetic energy. The total work <em>W</em> done by the spring on the glider to get it from the given point (4.00 cm from equilibrium) to <em>x</em> is

<em>W</em> = - (1/2 <em>kx</em> ² - 1/2 <em>k</em> (0.0400 m)²)

(note that <em>x</em> > 4.00 cm, and the restoring force of the spring opposes its elongation, so the total work is negative)

By the work-energy theorem, the total work is equal to the change in the glider's kinetic energy as it moves from 4.00 cm from equilibrium to <em>x</em>, so

<em>W</em> = ∆<em>K</em> = 0 - 1/2 <em>m</em> (0.835 m/s)²

Solve for <em>x</em> :

- (1/2 (160 N/m) <em>x</em> ² - 1/2 (160 N/m) (0.0400 m)²) = -1/2 (0.190 kg) (0.835 m/s)²

==>   <em>x</em> ≈ 0.0493 m ≈ 4.93 cm

(b) The glider attains its maximum speed at the equilibrium point. The work done by the spring as it is stretched away from equilibrium to the 4.00 cm position is

<em>W</em> = - 1/2 <em>k</em> (0.0400 m)²

If <em>v</em> is the glider's maximum speed, then by the work-energy theorem,

<em>W</em> = ∆<em>K</em> = 1/2 <em>m</em> (0.835 m/s)² - 1/2 <em>mv</em> ²

Solve for <em>v</em> :

- 1/2 (160 N/m) (0.0400 m)² = 1/2 (0.190 kg) (0.835 m/s)² - 1/2 (0.190 kg) <em>v</em> ²

==>   <em>v</em> ≈ 1.43 m/s

(c) The angular frequency of the glider's oscillation is

√(<em>k</em>/<em>m</em>) = √((160 N/m) / (0.190 kg)) ≈ 29.0 Hz

3 0
2 years ago
Other questions:
  • A car is traveling north at 17.7m/s After 12 s its velocity is 14.1m/s in the same direction. Find the magnitude and direction o
    14·1 answer
  • A 35 n object is on a 25 degree incline. the force of friction up the incline is 8.0 N.
    8·1 answer
  • While wearing rubber-soled shoes, you rub a helium balloon on your sweater. the balloon becomes negative charged. now release th
    9·1 answer
  • A 4.55 nF parallel-plate capacitor contains 27.5 μJ of stored energy. By how many volts would you have to increase this potentia
    6·1 answer
  • Which of the following describes an ionic compound (or what is true for ionic compounds)?
    6·1 answer
  • Which is the most closely related to the color of an acid-base indicator when dipped into solution?
    6·2 answers
  • A 100 Watt lightbulb has an average life of 2000 hours. How much energy does it consume over its lifetime? Give your answer in J
    14·1 answer
  • The Andromeda Galaxy is faintly visible to the naked eye in the constellation Andromeda. Suppose instead it were located in the
    6·1 answer
  • Two identical circular, wire loops 48.0 cm in diameter each carry a current of 4.50 A in the same direction. These loops are par
    10·1 answer
  • A lead object and quartz object each have the same initial volume. the volume of each increases by the same amount, because the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!