1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
umka2103 [35]
3 years ago
10

Andrew pokes a marble, and the marble rolls down a ramp. The marble moves with speed. Which forces are acting on the marble in t

his situation?
Physics
2 answers:
stich3 [128]3 years ago
4 0
The forces are Andrew poking the marble and then gravity pulling the marble downward
Lera25 [3.4K]3 years ago
3 0

Answer:

1. an applied force  2. gravitational  3.friction

Explanation:

Took it on Plato :)))

You might be interested in
You are exploring a distant planet. When your spaceship is in a circular orbit at a distance of 630 km above the planet's surfac
Anarel [89]

Answer:

R = 24.3 m

Explanation:

As we know that the orbital speed is given as

v = \sqrt{\frac{GM}{R + h}}

here we know that

v = 5500 m/s

R = 4.48 \times 10^6 m

h = 630 km

now we have

5500 = \sqrt{\frac{(6.6 \times 10^{-11})M}{4.48 \times 10^6 + 6.30\times 10^5}}

M = 2.34 \times 10^24 kg

now acceleration due to gravity of planet is given as

a = \frac{GM}{R^2}

a = \frac{(6.6 \times 10^{-11})(2.34 \times 10^{24})}{(4.48\times 10^6)^2}

a = 7.7 m/s^2

now range of the projectile on the surface of planet is given as

R = \frac{v^2 sin2\theta}{g}

R = \frac{14.6^2 sin(2\times 30.8)}{7.7}

R = 24.3 m

3 0
4 years ago
In a game of pool, a cue ball rolls without slipping toward the stationary eight ball with a momentum of 0.23 kg. After the two
IrinaVladis [17]

This question involves the concepts of the law of conservation of momentum.

The magnitude of the final momentum of the eight ball is "0.22 N.s".

According to the law of conservation of momentum:

P_{i1}+P_{i2}=P_{f1}+P_{f2}

where,

P_{i1} = initial momentum of the cue ball = 0.23 N.s

P_{i2} = initial momentum of the eight ball = 0 N.s (since ball is initially at rest)

P_{f1} = final momentum of the cue ball = 0.01 N.s

P_{f2} = final momentum of the eight ball = ?

Therefore,

0.23\ N.s + 0\N.s = 0.01\ N.s+P_{f2}\\\\P_{f2} = 0.22\ N.s

Learn more about the law of conservation of momentum here:

brainly.com/question/1113396?referrer=searchResults

3 0
3 years ago
Two isolated, concentric, conducting spherical shells have radii R1 = 0.500 m and R2 = 1.00 m, uniform charges q1=+2.00 µC and q
scZoUnD [109]

Complete Question

The diagram for this question is shown on the first uploaded image  

Answer:

a E =1.685*10^3 N/C

b E =36.69*10^3 N/C

c E = 0 N/C

d V = 6.7*10^3 V

e   V = 26.79*10^3V

f   V = 34.67 *10^3 V

g   V= 44.95*10^3 V

h    V= 44.95*10^3 V

i    V= 44.95*10^3 V

Explanation:

From the question we are given that

       The first charge q_1 = 2.00 \mu C = 2.00*10^{-6} C

       The second charge q_2 =1.00 \muC = 1.00*10^{-6}

      The first radius R_1 = 0.500m

      The second radius R_2 = 1.00m

 Generally \ Electric \ field = \frac{1}{4\pi\epsilon_0}\frac{q_1+\ q_2}{r^2}

And Potential \ Difference = \frac{1}{4\pi \epsilon_0}   [\frac{q_1 }{r}+\frac{q_2}{R_2} ]

The objective is to obtain the the magnitude of electric for different cases

And the potential difference for other cases

Considering a

                      r  = 4.00 m

           E = \frac{((2+1)*10^{-6})*8.99*10^9}{16}

                = 1.685*10^3 N/C

Considering b

           r = 0.700 m \ , R_2 > r > R_1

This implies that the electric field would be

            E = \frac{1}{4\pi \epsilon_0}\frac{q_1}{r^2}

             This because it the electric filed of the charge which is below it in distance that it would feel

            E = 8*99*10^9  \frac{2*10^{-6}}{0.4900}

               = 36.69*10^3 N/C

   Considering c

                      r  = 0.200 m

=>   r

 The electric field = 0

     This is because the both charge are above it in terms of distance so it wont feel the effect of their electric field

       Considering d

                  r  = 4.00 m

=> r > R_1 >r>R_2

Now the potential difference is

                  V =\frac{1}{4\pi \epsilon_0} \frac{q_1 + \ q_2}{r} = 8.99*10^9 * \frac{3*10^{-6}}{4} = 6.7*10^3 V

This so because the distance between the charge we are considering is further than the two charges given  

          Considering e

                       r = 1.00 m R_2 = r > R_1

                V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{1.00} \frac{1.00*10^{-6}}{1.00} ] = 26.79 *10^3 V

          Considering f

              r = 0.700 m \ , R_2 > r > R_1

                      V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.700} \frac{1.0*10^{-6}}{1.00} ] = 34.67 *10^3 V

          Considering g

             r =0.500\m , R_1 >r =R_1

   V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

          Considering h

                r =0.200\m , R_1 >R_1>r

  V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

           Considering i    

   r =0\ m \ , R_1 >R_1>r

  V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

8 0
4 years ago
A 2.0-kg block slides on a rough horizontal surface. A force (magnitude P = 4.0 N) acting parallel to the surface is applied to
irinina [24]

When the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².

<h3>Frictional force between the block and the horizontal surface</h3>

The frictional force between the block and the horizontal surface is determined by applying Newton's law;

∑F = ma

F - Ff = ma

Ff = F - ma

Ff = 4 - 2(1.2)

Ff = 4 - 2.4

Ff = 1.6 N

When the applied force increases to 5 N, the magnitude of the block's acceleration is calculated as follows;

F - Ff = ma

5 - 1.6 = 2a

3.4 = 2a

a = 3.4/2

a = 1.7 m/s²

Thus, when the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².

Learn more about frictional force here: brainly.com/question/4618599

8 0
2 years ago
Um caminhão de entregas transporta produtos de tamanho e peso elevados, o que requer o uso de máquina simples para facilitar a d
Korvikt [17]
Deez dee dee de de deez Brutus
8 0
3 years ago
Other questions:
  • A man is standing on a platform that is connected to a pulley arrangement, as the drawing shows. By pulling upward on the rope w
    9·1 answer
  • What is the main evidence for the structure of the Earth that occur from the generation of an earthquake?
    14·2 answers
  • An object is dropped near the earth's surface. At the end of 4.0 s, how fast is it falling in m/s? (Ignore air resistance.)
    7·2 answers
  • What makes a hypothesis testable
    6·2 answers
  • A mass of 100 grams of a particular radioactive substance decays according to the function m(t)=100e−t850
    13·1 answer
  • What occurred while the surface rocks of the Moon were impacted, creating a fine dust?
    11·2 answers
  • Are all solid natural non living matter on earth rock?
    15·1 answer
  • On a straight road with the +x axis chosen to point in the direction of motion, you drive for 5 hours at a constant 20 miles per
    7·1 answer
  • When working with electric charges, what symbol is used in equations to represent the electric field of an object?
    15·2 answers
  • A rigid object has a mass of 18kg and a radius of gyration of 0.3m. It is initially rotating clockwise about a fixed axis at its
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!