Solution:
After the reaction of mixture is worked-up Washing three times the organic with sodium carbonate helps to decrease the solubility of the organic layer into the aqueous layer. This allows the organic layer to be separated more easily.
And then the reaction washed by saturated NACL we have The bulk of the water can often be removed by shaking or "washing" the organic layer with saturated aqueous sodium chloride (otherwise known as brine). The salt water works to pull the water from the organic layer to the water layer.
Metals like sodium, potassium, magnesium, etc. are extracted by electrolysis of their chlorides in molten state.
These metals are not extracted by reduction of their oxides with carbon because:
Carbon has less affinity for oxygen than these metals
Carbon is a weaker reducing agent than these metals
These metals easily form oxides with oxygen, their oxides are very stable. Affinity to the oxygen is one the greatest of all elements.
Reducing agent is element or compound who loose electrons in chemical reaction. Sodium, potassium, calcium and magnesium are very strong reducing agents because they easily loose one or two valence electrons.
Electrolysis is a chemical methode that uses electric currents for chemical reactions.
More about reducing agent: brainly.com/question/7484765
#SPJ4
Answer:
Water
Explanation:
Hydrogen and oxygen is bonded together to make H2O aka. water
Answer:
The value of the Michaelis–Menten constant is 0.0111 mM.
Explanation:
Michaelis–Menten 's equation:
![v_o=V_{max}\times \frac{[S]}{(K_m+[S])}=k_{cat}[E_o]\times \frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=v_o%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D%3Dk_%7Bcat%7D%5BE_o%5D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)
![V_{max}=k_{cat}[E_o]](https://tex.z-dn.net/?f=V_%7Bmax%7D%3Dk_%7Bcat%7D%5BE_o%5D)
Where:
= rate of formation of products
[S] = Concatenation of substrate
= Michaelis constant
= Maximum rate achieved
= Catalytic rate of the system
= Initial concentration of enzyme
On substituting all the given values
We have :

[S] = 0.10 mM
![\frac{v_o}{V_{max}}=\frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=%5Cfrac%7Bv_o%7D%7BV_%7Bmax%7D%7D%3D%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)


The value of the Michaelis–Menten constant is 0.0111 mM.