Answer:
1.785 m/s
Explanation:
The momentum can be calculated using the expression below
M1 *V1 + M2 * V2 = (M1+M2) V3
M1= mass of van=9000 kg
M2= mass of car= 850kg
V3= velocity of entangled car
V1= Velocity of the van= 0
V2= velocity of the car= 5 m/ s
Substitute the values
(900×0) + (500×5)=( 900+500)× V3
2500=1400 V3
V3=2500/1400
V3= 1.785 m/s
Hence, velocity of the entangled cars after collision is 1.785 m/s
I believe it is
1.6x=2.7(x-1.8)
1.1x=2.7*1.8
x~4.4
4.4*1.6
~7.1m
Answer: See photo
Explanation: There are a couple of ways to use velocity in an equation in the photo.
Answer:
it is True as the operational definition of electric current.
Explanation:
The definition of electric current is
I = dQ / dt
By convention the direction of the current is the direction in which a positive charge flows.
The initial expression is the derivative that is the change of the load in the unit of time and this occurs in a given cross-sectional cable.
The proposed definition is the same as this, so it is True as the operational definition of electric current.
Switch because look A switch detects the speed that given device can handle and communicates with it at that speed