We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
-- Bathroom tiles are usually cool, so water condenses on them
when you take a hot bath or shower in the room.
-- The natural result is that a smooth tile would become slippery,
exactly when you're walking around with wet feet and nothing on them ...
a dangerous situation.
-- In order to circumvent this safety hazard, the tiles in the bathroom
should be rough, especially on the floor.
Answer:
Sound waves. Anything that vibrates is producing sound; soundis simply a longitudinal wave passing through a medium via the vibration of particles in themedium. Consider a sound wavetraveling in air
Answer:
A wedge is a machine that consists of two inclined planes, giving it a thin end and thick end. A wedge is used to cut or split apart objects. Force is applied to the thick end of the wedge, and the wedge applies force to the object along both of its sloping sides. This force causes the object to split apart
For these question, it has two separate equations: 2f(a) and f(2a) .
For f(2a) equations its x=2a, so you must substitute 2a into the f(x) equation
For 2f(a), it means the two time of f(a) equation with x=a, so you substitute a inti f(x) equation first, then you multiply it by 2.