Explanation:
Given that,
Mass of a freight car, 
Speed of a freight car, 
Mass of a scrap metal, 
(a) Let us assume that the final velocity of the loaded freight car is V. The momentum of the system will remain conserved as follows :

So, the final velocity of the loaded freight car is 0.182 m/s.
(b) Lost on kinetic energy = final kinetic energy - initial kinetic energy
![\Delta K=\dfrac{1}{2}[(m_1+m_2)V^2-m_1u_1^2)]\\\\=\dfrac{1}{2}\times [(30,000+110,000 )0.182^2-30000(0.85)^2]\\\\=-8518.82\ J](https://tex.z-dn.net/?f=%5CDelta%20K%3D%5Cdfrac%7B1%7D%7B2%7D%5B%28m_1%2Bm_2%29V%5E2-m_1u_1%5E2%29%5D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20%5B%2830%2C000%2B110%2C000%20%290.182%5E2-30000%280.85%29%5E2%5D%5C%5C%5C%5C%3D-8518.82%5C%20J)
Lost in kinetic energy is 8518.82. Negative sign shows loss.
Answer:
distance is 13 m for 100 dB
distance is 409 km for 10 dB
Explanation:
Given data
distance r = 2.30 m
source β = 115 dB
to find out
distance at sound level 100 dB and 10 dB
solution
first we calculate here power and intensity and with this power and intensity we will find distance
we know sound level β = 10 log(I/
) ......................a
put here value (I/
) = 10^−12 W/m² and β = 115
115 = 10 log(I/10^−12)
so
I = 0.316228 W/m²
and we know power = intensity × 4π r² ...............b
power = 0.316228 × 4π (2.30)²
power = 21.021604 W
we know at 100 dB intensity is 0.01 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 0.01 × 4π r²
so by solving r
r = 12.933855 m = 13 m
distance is 13 m
and
at 10 dB intensity is 1 × 10^–11 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 1 × 10^–11 × 4π r²
by solving r we get
r = 409004.412465 m = 409 km
LAPA HDIDOSHSUWJWVWIHDHDOSSHSVWIME
An instrument used to observe or imagine very small object using an optical mangifier
mirco cell.
Telescope is a magnifer of distance object