Answer:
The wavelength of the light is
.
Explanation:
Given that,
Distance between the slit centers d= 1.2 mm
Distance between constructive fringes 
Distance between fringe and screen D= 5 m
We need to calculate the wavelength
Using formula of width

Put the value into the formula




Hence, The wavelength of the light is
.
Answer:
460.52 s
Explanation:
Since the instantaneous rate of change of the voltage is proportional to the voltage in the condenser, we have that
dV/dt ∝ V
dV/dt = kV
separating the variables, we have
dV/V = kdt
integrating both sides, we have
∫dV/V = ∫kdt
㏑(V/V₀) = kt
V/V₀ = 
Since the instantaneous rate of change of the voltage is -0.01 of the voltage dV/dt = -0.01V
Since dV/dt = kV
-0.01V = kV
k = -0.01
So, V/V₀ = 
V = V₀
Given that the voltage decreases by 90 %, we have that the remaining voltage (100 % - 90%)V₀ = 10%V₀ = 0.1V₀
So, V = 0.1V₀
Thus
V = V₀
0.1V₀ = V₀
0.1V₀/V₀ = 
0.1 = 
to find the time, t it takes the voltage to decrease by 90%, we taking natural logarithm of both sides, we have
㏑(0.01) = -0.01t
So, t = ㏑(0.01)/-0.01
t = -4.6052/-0.01
t = 460.52 s
55 meters. If she started at 10 meters and ran 45 more, 10+45=55.
Answer:
c)From high potential to low potential.
Explanation:
Given that
current is flowing through resister.
As we know that those quantity have direction as well as magnitude then these are called vector quantity and those quantity have only magnitude then they called scalar quantity.
As we know that current have direction as well as magnitude so current is a vector quantity.
Current flows from high potential to low potential.