Answer:
A force pump can be used to raise water by a height of more than 10m, the maximum height allowed by atmospheric pressure using a common lift pump.
In a force pump, the upstroke of the piston draws water, through an inlet valve, into the cylinder. On the downstroke, the water is discharged, through an outlet valve, into the outlet pipe.
<h3><u>Answer;</u></h3>
= 8.55 Joules
<h3><u>Explanation;</u></h3>
Work done is the product of force and the distance moved by an object.
Work done = Force × distance
Force = 95 Newtons
Distance = X2 -X1
= 4 - (-5)
= 9 cm
Thus;
work done = 95 × 9/100
<u>= 8.55 Joules </u>
Answer:
B. 17m/s
Explanation:
This question contains a graph that illustrates the relationship between the speed of a car over time. The graph shows that one can make an inference of the amount of time it takes for the car to cover a particular speed and vice versa.
In this case, after 3 seconds, the speed of the car will be 17 m/s. This inference was got by tracing the position of 3s in the x-axis to the value on the y-axis. Doing this, the best inference for the speed of the car after 3 seconds is 17m/s.
Answer:
0.03167 m
1.52 m
Explanation:
x = Compression of net
h = Height of jump
g = Acceleration due to gravity = 9.81 m/s²
The potential energy and the kinetic energy of the system is conserved

The spring constant of the net is 20130.76 N
From Hooke's Law

The net would strech 0.03167 m
If h = 35 m
From energy conservation

Solving the above equation we get

The compression of the net is 1.52 m