Answer:
Explanation:
Height attained by body = 50 cm
= .5 m
Initial velocity = u
v² = u² - 2gh
0 = u² - 2gh
u² = 2 x 9.8 x .5
u = 3.13 m /s
During the initial period , the muscle stretches by around 10 cm during which force by ground reacts on the body and gives acceleration to achieve velocity of 3.13 m/s from zero .
v² = u² + 2as
3.13² = 0 + 2 a x .10
a = 49 m/s²
reaction by ground R
Net force
R-mg = ma
R= m ( g +a )
= mg + ma
=W + (W/g) x a
W ( 1 + a / g )
= W ( 1 + 49 / 9.8 )
= 6W
Answer:
378 KWh
Explanation:
We'll begin by converting 1.2×10³ W to KW. This can be obtained as follow:
10³ W = 1 KW
Therefore,
1.2×10³ W = 1.2×10³ W × 1 KW / 10³ W
1.2×10³ W = 1.2 KW
Next, we shall convert 6.3×10² mins to hours (h). This can be obtained as follow:
60 mins = 1 h
Therefore,
6.3×10² mins = 6.3×10² mins × 1 h / 60 mins
6.3×10² mins = 10.5 h
Finally, we shall determine the electrical energy in KWh used for 1 month (i.e 30 days). This can be obtained as follow:
Power (P) = 1.2 KW
Time (t) for 1 month (30 days) = 10.5 h × 30
= 315 h
Energy (E) =?
E = Pt
E = 1.2 × 315
E = 378 KWh
Thus, the electrical energy used for 1 month (i.e 30 days) is 378 KWh.
Answer:
Explanation:
#1 uses Newton's 2nd Law: F = ma so filling in:
750 = .4a and
a = 1875 m/s/s
#2 uses d = rt so
d = 12.3(25) and
d = 307.5 m
Answer:
convection, conduction, and radiation
Explanation: