Answer:
The maximum length of the specimen before deformation is 240.64 mm
Explanation:
Strain = stress ÷ elastic modulus
stress = load ÷ area
load = 2130 N
diameter = 3.4 mm = 3.4×10^-3 m
area = πd^2/4 = 3.142 × (3.4×10^-3)^2/4 = 9.08038×10^-6 m^2
stress = 2130 N ÷ 9.08038×10^-6 m^2 = 2.35×10^8 N/m^2
elastic modulus = 126 GPa = 126×10^9 Pa
Strain = 2.35×10^8 ÷ 126×10^9 = 0.00187
Length = extension ÷ strain = 0.45 mm ÷ 0.00187 = 240.64 mm
Answer : The molarity of solution is, 1.73 mole/L
Explanation :
The relation between the molarity, molality and the density of the solution is,
where,
![d=M[\frac{1}{m}+\frac{M_b}{1000}]](https://tex.z-dn.net/?f=d%3DM%5B%5Cfrac%7B1%7D%7Bm%7D%2B%5Cfrac%7BM_b%7D%7B1000%7D%5D)
d = density of solution = 
m = molality of solution = 2.41 mol/kg
M = molarity of solution = ?
= molar mass of solute (toluene) = 92 g/mole
Now put all the given values in the above formula, we get the molality of the solution.
![0.876g/ml=M\times [\frac{1}{2.41mol/kg}+\frac{92g/mole}{1000}]](https://tex.z-dn.net/?f=0.876g%2Fml%3DM%5Ctimes%20%5B%5Cfrac%7B1%7D%7B2.41mol%2Fkg%7D%2B%5Cfrac%7B92g%2Fmole%7D%7B1000%7D%5D)

Therefore, the molarity of solution is, 1.73 mole/L
Answer:
You will have 19.9L of Cl2
Explanation:
We can solve this question using:
PV = nRT; V = nRT/P
<em>Where V is the volume of the gas</em>
<em>n the moles of Cl2</em>
<em>R is gas constant = 0.082atmL/molK</em>
<em>T is 273.15K assuming STP conditions</em>
<em>P is 1atm at STP</em>
The moles of 63g of Cl2 gas are -molar mass: 70.906g/mol:
63g * (1mol / 70.906g) = 0.8885 moles
Replacing:
V = 0.8885mol*0.082atmL/molK*273.15K/1atm
V = You will have 19.9L of Cl2
Answer:
See explanation.
Explanation:
Hello!
In this case, we consider the questions:
a. Ideal gas at:
i. 273.15 K and 22.414 L.
ii. 500 K and 100 cm³.
b. Van der Waals gas at:
i. 273.15 K and 22.414 L.
ii. 500 K and 100 cm³.
Thus, we define the ideal gas equation and the van der Waals one as shown below:

Whereas b and a for hydrogen sulfide are 0.0434 L/mol and 4.484 L²*atm / mol² respectively, therefore, we proceed as follows:
a.
i. 273.15 K and 22.414 L.

ii. 500 K and 100 cm³ (0.1 L).

b.
i. 273.15 K and 22.414 L: in this case, v = 22.414 L / 1.00 mol = 22.414 L/mol

ii. 500 K and 100 cm³: in this case, v = 0.1 L / 1.00 mol = 0.100 L/mol

Whereas we can see a significant difference when the gas is at 500 K and occupy a volume of 0.100 L.
Best regards!
It is corn syrup and milk.