In an acidic solution, the concentration of H+ is greater than the concentration of OH-. The pH will be less than 7.
In a basic solution, the concentration of OH- is greater than the concentration of H+. The pH will be greater than 7.
In a neutral solution, the concentration of H+ ions to OH-ions will be equal, and will therefore have a pH of 7. (This is due to water autoionization, which we usually ignore because it is small in other circumstances.)
Answer:
140 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 3 atm
- Initial temperature of the gas (T₁): 280 K
- Final pressure of the gas (P₂): 1.5 atm
- Final temperature of the gas (T₂): ?
Step 2: Calculate the final temperature of the gas
We have a gas whose pressure is reduced. If we assume an ideal behavior, we can calculate the final temperature of the gas using Gay-Lussac's law.
T₁/P₁ = T₂/P₂
T₂ = T₁ × P₂/P₁
T₂ = 280 K × 1.5 atm/3 atm = 140 K
<span>B) The crystals did not phosphoresce within the drawer but did expose the film</span>
Answer:
They blow away from poles to the equator.
Explanation:
Hello,
In this case, we must take into account that global wind systems are formed by the constant increase in the temperature of the Earth’s surface. Thus, they drive the oceans’ surface currents. In such a way, we can say wind is the basic movement of air from an area of higher pressure to an area of lower pressure, for that reason they blow away from the poles to the equator.
Best regards.