Oxygen gains two electrons when it bonds to form a complete outer shell and magnesium loses two electrons when bonding to gain its full outer shell.
As electrons are negative, the oxygen (which gains electrons) will become negative and the magnesium (which loses electrons) will become positive.
The negative and positive ions will then attract to one another due to the magnetic pull of the positive and negative.
So we know the number of moles of each compound. If we need to know the concentration we must know the number of moles that the compounds react with...
Answer:
The concentration of monosodium phosphate is 0.1262M
Explanation:
The buffer of H₂PO₄⁻ / HPO₄²⁻ (Monobasic phosphate and dibasic phosphate has a pKa of 7.2
To determine the pH you must use Henderson-Hasselbalch equation:
pH = pKa + log [A⁻] / [HA]
<em>Where [A⁻] is molarity of the conjugate base of the weak acid, [HA].</em>
For H₂PO₄⁻ / HPO₄⁻ buffer:
pH = 7.2 + log [HPO₄⁻² ] / [H₂PO₄⁻]
As molarity of the dibasic phosphate is 0.2M and you want a pH of 7.4:
7.4 = 7.2 + log [0.2] / [H₂PO₄⁻]
0.2 = log [0.2] / [H₂PO₄⁻]
1.58489 = [0.2] / [H₂PO₄⁻]
[H₂PO₄⁻] = 0.1262M
<h3>The concentration of monosodium phosphate is 0.1262M</h3>
<em />
Answer:
Explanation:
The formula relating the mass m of a sample and the heat q to vaporize it is
q = mL, where L is the latent heat of vaporization.

Your body uses water in all its cells, organs, and tissues to help regulate its temperature and maintain other bodily functions. Because your body loses water through breathing, sweating, and digestion, it's important to re-hydrate by drinking fluids and eating foods that contain water.