Answer: the refraction of light by the atmosphere
Explanation: Refraction is the phenomenon in which there is a change in direction of light passing from one medium to another or from a gradual change in the medium.
Here in case of sunset, the sun rays passes through the varying density of atmosphere because of varying concentrations of dust particles.
Reflection is the phenomenon in which the light bounces back after falling on a surface.
Absorption is the phenomenon in which matter captures the electromagnetic radiations and thus the energy of photons is converted to internal energy of the system.
We have that the Number of stitches per sec and he mass of oscillation motion is mathematically given as
a) Nt=25stitches per sec
b) m=2.033e-5kg
<h3>
Number of
stitches per sec and he mass of oscillation motion</h3>
Question Parameters:
This <u>sewing </u>machine is capable of stitching 1,500 stiches in one minute.
If the <em>sewing </em>machine has a spring constant of 0.5 N/m,
Generally the equation for the Number of stitches per sec is mathematically given as
Nt=N/t
Therefore
Nt=1500/60
Nt=25stitches per sec
b)
Generally the equation for the Time t is mathematically given as

Therefore

m=2.033e-5kg
For more information on Mass visit
brainly.com/question/15959704
Answer:
(a) The energy of the photon is 1.632 x
J.
(b) The wavelength of the photon is 1.2 x
m.
(c) The frequency of the photon is 2.47 x
Hz.
Explanation:
Let;
= -13.60 ev
= -3.40 ev
(a) Energy of the emitted photon can be determined as;
-
= -3.40 - (-13.60)
= -3.40 + 13.60
= 10.20 eV
= 10.20(1.6 x
)
-
= 1.632 x
Joules
The energy of the emitted photon is 10.20 eV (or 1.632 x
Joules).
(b) The wavelength, λ, can be determined as;
E = (hc)/ λ
where: E is the energy of the photon, h is the Planck's constant (6.6 x
Js), c is the speed of light (3 x
m/s) and λ is the wavelength.
10.20(1.6 x
) = (6.6 x
* 3 x
)/ λ
λ = 
= 1.213 x 
Wavelength of the photon is 1.2 x
m.
(c) The frequency can be determined by;
E = hf
where f is the frequency of the photon.
1.632 x
= 6.6 x
x f
f = 
= 2.47 x
Hz
Frequency of the emitted photon is 2.47 x
Hz.
Answer: Examples of nonrenewable resources include crude oil, natural gas, coal, and uranium. These are all resources that are processed into products that can be used commercially. For example, the fossil fuel industry extracts crude oil from the ground and converts it to gasoline.