Answer:
Explanation:
Assuming no friction between the roller coaster car and the hill, and neglecting air resistance, the kinetic energy the roller coaster car would have at the bottom of the hill would be equal to its gravitational potential energy at the top of the hill, by conservation of energy.
Answer:
True
Explanation:
Going even smaller than atoms would get you to subatomic particles such as quarks. From there, it is impossible to distinguish elements. So, yes, atoms are the smallest portions of an element that retains the original characteristic of the element.
I believe it is -1.11 m/s^2. I will let you know if its correct
Can you please give the phrases?
But, I'll help what I can.
First, he was the first to discover gravity. He was not bonked by the head by an apple, rather he watched an apple fall from a tree before he decided to explore gravity further.
He was also the first scientist to be knighted, which is a great honor, as you can expect.
Newton also developed The Three Laws of Motion. They are extremely important to physics and are considered some of the foundation for physics today.
He also discovered calculus, which is complex math that is very helpful to scientists today.
He also discovered the color spectrum using a glass prism, a dark room and window shade with a hole in it. He was able to project the color spectrum onto a piece of paper.
Those are the few I can think of now, but hope it helps!
Complete Question:
Metal sphere A has a charge of − Q . −Q. An identical metal sphere B has a charge of + 2 Q . +2Q. The magnitude of the electric force on sphere B due to sphere A is F . F. The magnitude of the electric force on sphere A due to sphere B must be:
A. 2F
B. F/4
C. F/2
D. F
E. 4F
Answer:
D.
Explanation:
If both spheres can be treated as point charges, they must obey the Coulomb's law, that can be written as follows (in magnitude):

As it can be seen, this force is proportional to the product of the charges, so it must be the same for both charges.
As this force obeys also the Newton's 3rd Law, we conclude that the magnitude of the electric force on sphere A due to sphere B, must be equal to the the magnitude of the force on the sphere B due to the sphere A, i.e., just F.