Answer:
the one with a higher mass
Explanation:
The body with more mass will have the greater kinetic energy of the two.
Kinetic energy is the energy due to the motion of body. It is mathematically expressed as:
K.E =
m v²
m is the mass
v is the velocity
Since the velocity of the two bodies are the same, and mass is directly proportional to kinetic energy, the body with more mass will have a higher kinetic energy.
So between mass m1 and mass m2, the one with a greater mass will have a higher kinetic energy
Answer
Given,
y(x, t) = (3.5 cm) cos(2.7 x − 92 t)
comparing the given equation with general equation
y(x,t) = A cos(k x - ω t)
A = 3.5 cm , k = 2.7 rad/m , ω = 92 rad/s
we know,
a) ω =2πf
f = 92/ 2π
f = 14.64 Hz
b) Wavelength of the wave
we now, k = 2π/λ
2π/λ = 2.7
λ = 2 π/2.7
λ = 2.33 m
c) Speed of wave
v = ν λ
v = 14.64 x 2.33
v = 34.11 m/s
Take the missile's starting position to be the origin. Assuming the angles given are taken to be counterclockwise from the positive horizontal axis, the missile has position vector with components


The missile's final position after 9.20 s has to be a vector whose distance from the origin is 19,500 m and situated 32.0 deg relative the positive horizontal axis. This means the final position should have components


So we have enough information to solve for the components of the acceleration vector,
and
:


The acceleration vector then has direction
where
