Answer:
A 5
Explanation:
The wave with the least amount of wavelength will have the greatest amount of energy.
Wavelength and energy shares an inverse relationship;
E = h f = 
From this equation, we see that the higher the energy of a wave, the lesser its wavelength.
- Choice A from the options has the least wavelength.
- Wavelength is the distance between two successive crests of a wave.
This is why we see that in the electromagnetic spectrum, radio waves have the least energy because they have the longest wavelength.
<h3><u>Answers;</u></h3>
Antarctica and Greenland
Present day glaciers are found primarily in <em><u>Antarctica and Greenland</u></em>.
<h3><u>Explanation;</u></h3>
- <em><u>The two major ice sheets that exists today are found primarily in Antarctica and Greenland. Ice sheets are large masses of glacial ice that are also known as continental glaciers.</u></em>
- Most ice in Antarctica and Greenland spill out into the ocean from a few spots. The Antarctica and Greenland ice sheets combined comprise more than 99 percent of freshwater ice found on Earth.
The acceleration is 3.3 m/s2
The working distance gets shorter as the magnification gets bigger. In order to focus, the high-power objective lens must be significantly nearer to the specimen than the low-power lens. Magnification is negatively correlated with working distance.
Magnification change The magnification of a specimen is increased by switching from low power to high power. The magnification of an image is determined by multiplying the magnification of the objective lens by the magnification of the ocular lens, or eyepiece.
The geometry of the optical system connects the magnifying power, or how much the thing being observed seems expanded, and the field of view, or the size of the object that can be seen.
To know more about working distance
brainly.com/question/13551539
#SPJ4
For an inelastic collision where coefficient of restitution,e, is equal to 0, the momentum is conserved but not the kinetic energy. So, there is addition or elimination of kinetic energy.
On the otherhand, when e = 1, like for an elastic collision, kinetic energy and momentum is conserved. Thus, the system's kinetic energy is unchanged.