Answer:
A i. Internal energy ΔU = -4.3 J ii. Internal energy ΔU = -6.0 J B. The second system is lower in energy.
Explanation:
A. We know that the internal energy,ΔU = q + w where q = quantity of heat and w = work done on system.
1. In the above q = -7.9 J (the negative indicating heat loss by the system). w = 3.6 J (It is positive because work is done on the system). So, the internal energy for this system is ΔU₁ = q + w = -7.9J + 3.6J = -4.3 J
ii. From the question q = +1.5 J (the positive indicating heat into the system). w = -7.5 J (It is negative because work is done by the system). So, the internal energy for this system is ΔU₂ = q + w = +1.5J + (-7.5J) = +1.5J - 7.5J = - 6.0J
B. We know that ΔU = U₂ - U₁ where U₁ and U₂ are the initial and final internal energies of the system. Since for the systems above, the initial internal energies U₁ are the same, then we say U₁ = U. Let U₁ and U₂ now represent the final energies of both systems in A i and A ii above. So, we write ΔU₁ = U₁ - U and ΔU₂ = U₂ - U where ΔU₁ and ΔU₂ are the internal energy changes in A i and A ii respectively. Now from ΔU₁ = U₁ - U, U₁ = ΔU₁ + U and U₂ = ΔU₂ + U. Subtracting both equations U₁ - U₂ = ΔU₁ - ΔU₂
= -4.3J -(-6.0 J)= 1.7 J. Since U₁ - U₂ > 0 , U₂ < U₁ , so the second system's internal energy increase less and is lower in energy and is more stable.
Answer:
CH₃CH₂CH₂COOH > CH₃CH₂COOH > ClCH₂CH₂COOH > ClCH₂COOH
Explanation:
Electron-withdrawing groups (EWGs) increase acidity by inductive removal of electrons from the carboxyl group.
Electron-donating groups (EDGs) decrease acidity by inductive donation of electrons to the carboxyl group.
- The closer the substituent is to the carboxyl group, the greater is its effect.
- The more substituents, the greater the effect.
- The effect tails off rapidly and is almost zero after about three C-C bonds.
CH₃CH₂-CH₂COOH — EDG — weakest — pKₐ = 4.82
CH₃-CH₂COOH — reference — pKₐ = 4.75
ClCH₂-CH₂COOH — EWG on β-carbon— stronger — pKₐ = 4.00
ClCH₂COOH — EWG on α-carbon — strongest — pKₐ = 2.87
The answer is most likely C
Answer:
194.6 mL of SO₂
Explanation:
The reaction that takes place is:
P₄S₃ + 6O₂(g) → P₄O₁₀ + 3SO₂(g)
<u>To solve this problem we need to use PV=nRT</u>, so first let's convert the given units:
- 23.8 °C → 23.8 + 273.15 = 296.95 K
- 747 torr → 747/760 = 0.983 atm
We need to calculate V, so in order to do that we calculate n, using the mass of the reactant (P₄S₃):
0.576 g P₄S₃ *
= 7.85 * 10⁻³ mol SO₂ = n
PV=nRT
0.983 atm * V = 7.85 * 10⁻³ mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 296.95 K
V = 0.1946 L
- Finally we convert L into mL:
0.1946 * 1000 = 194.6 mL