The motorbike reaches 100 km/h in 3.5 seconds
Explanation:
The motion of the motorbike is a uniformly accelerated motion (= constant acceleration), therefore we can use the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
For the motorbike in this problem,
u = 0 (it starts from rest)
is the final velocity
is the acceleration
Solving for t, we find the time it takes for the bike to reach that velocity:

Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
the Architect should use {!$FieldType.lead.accessible} expression within the Visualforce page.
Explanation:
Visualforce is a framework that allows developers to build complex, user friendly interfaces that can be hosted primarily on the Lightning Platform
Controllers provide access to the data that should be displayed in a page, and can modify component behavior. a number of standard controllers are provided by The Lightning platform that contain functionality and logic that which are used for standard Salesforce pages
The Architect should Use the expression {!$FieldType.lead.accessible} within the Visualforce page.
Answer:

Explanation:
let
be the mass attached, let
be the spring constant and let
be the positive damping constant.
-By Newton's second law:

where
is the displacement from equilibrium position. The equation can be transformed into:
shich is the equation of motion.
All wheelchairs may be secured
so that the user is facing the curb side of the vehicle is true. The answer is
letter A. It provides a unique 180 degree powered rotation which makes it
possible to raise, lower and rotate fully.
Answer:
128.9 N
Explanation:
The force exerted on the golf ball is equal to the rate of change of momentum of the ball, so we can write:

where
F is the force
is the change in momentum
is the time interval
The change in momentum can be written as

where
m = 0.04593 kg is the mass of the ball
u = 0 is the initial velocity of the ball
is the final velocity of the ball
Substituting into the original equation, we find the force exerted on the golf ball:
