58874889879879797fc8755555555555555555555555555555555555555555555511111111111111111111111111111111113333333333333333333222222222222220000000000000000000000000000000000000000000000..................
Answer:The electron configuration of an atom shows the number of electrons in each sublevel in each energy level of the ground-state atom. To determine the electron configuration of a particular atom, start at the nucleus and add electrons one by one until the number of electrons equals the number of protons in the nucleus. Each added electron is assigned to the lowest-energy sublevel available. The first sublevel filled will be the 1s sublevel, then the 2s sublevel, the 2p sublevel, the 3s, 3p, 4s, 3d, and so on. This order is difficult to remember and often hard to determine from energy-level diagrams such as Figure 5.8
A more convenient way to remember the order is to use Figure 5.9. The principal energy levels are listed in columns, starting at the left with the 1s level. To use this figure, read along the diagonal lines in the direction of the arrow. The order is summarized under the diagram
The penguin has a sleek body that helps it to move quickly in water.
Answer:
edfgkvisiaixiicciciviicsiaiaqwododc
Note that it says oxygen "gas"
So you need the atomic mass of oxygen gas
Look at your periodic table, you'll see 15.9994 under oxygen
Oxygen gas has a formula of O2 therefore,
(15.9994) times 2= Oxygen gas atomic mass=31.9988
Mol= Mass/Atomic Mass
=62.3 g/ 31.9988 g/mol = 1.95 mol
now look at the ratio of C2H6 and O2, notice there is an invisible number beside each of them, at that "invisible number" is =1
1 C2H6 + 1 O2 -> products
this means that for 1 mol of C2H6, 1 mol of O2 has to react with it
Thus as we have 1.95 moles of O2, we need 1.95 moles of C2H6