84.24 g of water (H₂O)
Explanation:
We have the following chemical reaction:
2 H₂O → 2 H₂ + O₂
Now we calculate the number of moles of products.
number of moles = mass / molar weight
number of moles of H₂ = 50 / 2 = 25 moles
number of moles of O₂ = 75 / 32 = 2.34 moles
We see from the chemical reaction that for every 2 moles of H₂ produced there are 1 mole of O₂ produces for every 25 moles of H₂ produced there are 12.5 moles of O₂ but we only have 2.35 moles of O₂ available. The O₂ will be the limiting quantity from which we devise the following reasoning:
if 2 moles of H₂O produces 1 mole of O₂
then X moles of H₂O produces 2.34 mole of O₂
X = (2 × 2.34) / 1 = 4.68 moles of H₂O
mass = number of moles × molar weight
mass of H₂O = 4.68 × 18 = 84.24 g
Learn more about:
limiting reactant
brainly.com/question/7144022
brainly.com/question/6820284
brainly.com/question/14108423
#learnwithBrainly
Answer: The amount of heat needed is = 4.3kJ
Explanation:
Amount of heat H = M × C × ΔT
M= mass of benzene = 64.7g
C= specific heat capacity = 1.74J/gK
ΔT = T2-T1
Where T1 is initai temperature = 41.9C
T2 is the final temperature( boiling point of benzene) = 80.1C
H= 64.7×1.74×80.7
H= 4300J
H=4.3kJ
Therefore, the amount of heat needed is 4.3kJ
The Law states that the change in internal energy (U) of the system is equal to the sum of the heat supplied to the system (q) and the work done ON the system (W)
<span>ΔU = q + W </span>
<span>For the first question, 0.653kJ of heat energy is removed from the system (balloon) while 386J of work is done ON the balloon, thus </span>
<span>ΔU = -653J + 386J </span>
<span>=-267J </span>
<span>Thus internal energy decrease by 267J </span>
<span>For the second question, 322J of heat energy is added to the system (gold bar) while no work is done on the gold bar, this is an isochoric/isovolumetric process, thus </span>
<span>ΔU = 322J + 0 </span>
<span>=322J </span>
<span>Thus internal energy increase by 322J</span>
Answer:
i really don't know
Explanation:
but if you got an answer please let me know ty:)
Answer:
Valence electrons are the electrons in the outermost shell, or energy level, of an atom. For example, oxygen has six valence electrons, two in the 2s subshell and four in the 2p subshell.