Answer:
Explanation:
Given a particle of mass
M = 1.7 × 10^-3 kg
Given a potential as a function of x
U(x) = -17 J Cos[x/0.35 m]
U(x) = -17 Cos(x/0.35)
Angular frequency at x = 0
Let find the force at x = 0
F = dU/dx
F = -17 × -Sin(x/0.35) / 0.35
F = 48.57 Sin(x/0.35)
At x = 0
Sin(0) =0
Then,
F = 0 N
So, from hooke's law
F = -kx
Then,
0 = -kx
This shows that k = 0
Then, angular frequency can be calculated using
ω = √(k/m)
So, since k = 0 at x = 0
Then,
ω = √0/m
ω = √0
ω = 0 rad/s
So, the angular frequency is 0 rad/s
<h2>
Answer: The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.</h2>
Explanation:
The half-life
of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.
In this case, we are given the half life of two elements:
beryllium-13: 
beryllium-15: 
As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?
We can find it out by the following expression:

Where
is the amount we want to find:


Finally:

Therefore:
The half-life of beryllium-15 is <u>400 times greater than</u> the half-life of beryllium-13.
Car is moving on the glassy slope with constant speed
Now we know that

so acceleration is rate of change in velocity
as we know that velocity is constant here so acceleration is zero
so here

now as we know by Newton's II law

since a = 0

so net force will be ZERO on it during this motion
I don't know what the exact word is, but I do know that the bigger an objects mass is the more it will attract other objects toward it, mainly smaller objects with less mass. it might be gravity or something around those lines....is it a multiple choice question?
Answer:
T1 = 131.4 [N]
T2 = 261 [N]
Explanation:
To solve this problem we must make a sketch of how will be the semicircle, for this reason we conducted an internet search, to find the scheme of the problem. This scheme is attached in the first image.
Then we make a free body diagram, with this free body diagram, we raise the forces that act on the body. Since it is a problem involving static equilibrium, the sum of forces in any direction and moments must be equal to zero.
By performing a sum of forces on the Y axis equal to zero we can find an equation that relates the forces of tension T1 & T2.
The second equation can be determined by summing moments equal to zero, around the point of application of the T1 force. In this way we find the T2 force.
The value of T2, is replaced in the first equation and we can find the value for T1.
Therefore
T1 = 131.4 [N]
T2 = 261 [N]
The free body diagram and the developed equations can be seen in the second attached image.