Answer:
A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.
Explanation:
The bulk modulus is represented by the following differential equation:

Where:
- Bulk module, measured in pascals.
- Sample volume, measured in cubic meters.
- Local pressure, measured in pascals.
Now, let suppose that bulk remains constant, so that differential equation can be reduced into a first-order linear non-homogeneous differential equation with separable variables:

This resultant expression is solved by definite integration and algebraic handling:




The final volume is predicted by:

If
,
and
, then:


Change in volume due to increasure on pressure is:



A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.
Answer:
It is important to be able to separate mixtures to obtain a desired component from the mixture and to be able to better understand how each component.
Explanation:
M/s, km/h, and mph are all used to measure these quantities
Answer: p= m/v so 90kg/.075m^3 = 1,200
2a. .35 m 1.1 m and .015 m
2b. 35 cm x 110 cm x 1.5 cm = 5,775 cm^3 = 57.75 m^3
mass= pv
2700•57.75= 155,925 kg
mass= 155,925 kg
volume= 57.75 m^3
Explanation: physics
The emf will be induced in anti-clockwise direction.
<u>Explanation</u>
Lenz's law tells us the direction us the direction that the current will flow. It states that the direction is always such that it will oppose the change in flux which produced it. This means that any magnetic field produced by an induced current will be in opposite direction to the change in the original field.
To find the direction of emf, Stretch the forefinger, middle finger and the thumb of the right hand mutually perpendicular to each other. If the force finger points in the direction of the magnetic field, the thumb gives the direction of the motion of the conductor then the middle finger gives the direction of the induced current.