It would be static friction which is what you have to overcome when an object is not in motion. When you move an object friction works against it like gravity and air resistance. I hope this helps!
Answer:
The tension in the string is equal to Ct
And the time t0 when the rension in the string is 27N is 3.6s.
Explanation:
An approach to solving this problem jnvolves looking at the whole system as one body by drawing an imaginary box around both bodies and taking summation of the forces. This gives F2 - F1 = Ct. This is only possible assuming the string is massless and does not stretch, that way transmitting the force applied across it undiminished.
So T = Ct
When T = 27N then t = T/C = 27/7.5 = 3.6s
Answer:
An isothermal process is a change of a system, in which the temperature remains constant: ΔT = 0.
Explanation:
:)
Answer:

Explanation:
Given that,
The length of a simple pendulum, l = 2.2 m
The time period of oscillations, T = 4.8 s
We need to find the surface gravity of the planet. The time period of the planet is given by the relation as follows :

Put all the values,

So, the value of the surface gravity of the planet is equal to
.
It would do exactly what a rock or a frisbee does when you toss it.
After the engines cut off, it couldn't get any more energy from
anywhere, and after that, as it pushed air aside to get through,
and had air molecules scraping against it, those would slowly
rob kinetic energy from it. Sooner or later it would run out of
kinetic energy, start falling, and it would eventually make either
a big 'SPLOOSH' or else a big 'CRUNCH', depending on exactly
where it returned to Earth's surface.