Answer:
1 x 10¹⁷
Explanation:
Given data:
Radius of the earth = 6000km
Radius of an atom = 60pm
Now, how many orders is the radius of the earth larger than an atom
Solution:
To solve this problem, let us express both quantity as the same unit;
1000m = 1km
6000km = 6000 x 10³m = 6 x 10⁶m
60pm;
1 x 10⁻¹²m = 1pm
60pm = 60 x 1 x 10⁻¹²m = 6 x 10⁻¹¹m
Now;
The order:
= 1 x 10¹⁷
Answer:
Answer is It was deduced from the rate at which it glimmers.
Refer below.
Explanation:
The X-ray source Cygnus X-1 has a mass of at least 11 solar masses and a diameter of only about one-quarter the diameter of the Earth. With such a small diameter it must be a compact object, and with such a large mass it can't be a white dwarf or a neutron star, so a black hole is the only possibility remaining. The diameter of Cygnus X-1 found:
It was deduced from the rate at which it glimmers.
Theoretically, if the objects have the same mass and are moving towards each other at a speed of

, after a perfectly elastic collision, the object A is supposed to move with the same velocity in the opposite direction.
Answer:
ΔK.E = 14 nJ
Explanation:
Solution:
- The charge that moves under the influence of an Electric Field produced between a potential difference (V) stores electric potential energy U within that is converted to kinetic energy.
- We will use conservation of energy on the system that contains the charged particle with charge q loses its electric potential energy U as it moves towards positively charged object that converts into a gain in Kinetic energy of the charged particle ΔK.E:
ΔK.E = U
Where,
U = V*q
ΔK.E = V*q
ΔK.E = (7*10^-6)*(2*10^-3)
ΔK.E = 14 nJ
- The gain in kinetic energy is 14 nJ.