C. Both A. and B.
Explanation:
Statement A. Reducing the volume is true because of Boyle's law, which states that for a gas at fixed temperature, the pressure p and the volume V are inversely proportional:

Therefore, when the volume V is reduced, the pressure p increases.
Statement B. Adding more gas is also true: in fact, if we add gas into the container, we will have more molecules of the gas hitting the wall of the container. But the pressure of a gas is exactly given by this: by the collision of the molecules against the wall of the container, so the more the molecules of gas, the greater the pressure.
Answer:
Explanation:
Orbital radius of satellite A , Ra = 6370 + 6370 = 12740 km
Orbital radius of satellite B , Rb = 6370 + 19110 = 25480 km
Orbital potential energy of a satellite = - GMm / r where G is gravitational constant , M is mass of the earth and m is mass of the satellite
Orbital potential energy of a satellite A = - GMm / Ra
Orbital potential energy of a satellite B = - GMm / Rb
PE of satellite B /PE of satellite A
= Ra / Rb
= 12740 / 25480
= 1 / 2
b ) Kinetic energy of a satellite is half the potential energy with positive value , so ratio of their kinetic energy will also be same
KE of satellite B /KE of satellite A
= 1 / 2
c ) Total energy will be as follows
Total energy = - PE + KE
- P E + PE/2
= - PE /2
Total energy of satellite B / Total energy of A
= 1 / 2
Satellite B will have greater total energy because its negative value is less.
Answer:
v = 12.12 m/s
Explanation:
It is given that,
Radius of circle, r = 30 m
The coefficient friction between tires and road is 0.5,
The centripetal force is balanced by the force of friction such that,
v = 12.12 m/s
So, the maximum speed with which this car can round this curve is 12.12 m/s. Hence, this is the required solution.
B. Elastic potential to kinetic energy
The elastic potential energy in the slingshot will be transferred to the stone as kinetic energy as the stone is launched.