Answer:
The correct answer is:
a) remain where it is released
Explanation:
The concept of density seeks to measure the weight of an object in relation to its size. It is the measure of how packed together the particles of that object are. An object placed in a liquid displaces a certain volume of the liquid, based on the relative density of the object and the liquid.
If an object is less dense than a liquid in which it is placed, it displaces a smaller volume of the liquid than its volume, hence only some part of the object will be seen to be under the liquid, the other part will float.
If an object is denser than the liquid in which it is placed, it displaces a larger volume of the liquid than its own volume, making the object to sink and is submerged, sometimes to the bottom of the liquid, but mostly below the point at which it was released.
Finally, if the density of an object and the liquid into which it is submerged is the same. the object's mass per unit volume is the same as the liquid's mass per unit volume, hence the weight and force created due to density will balance and cancel each other out hence making the object to remain where it was submerged.
Answer: 3.41 s
Explanation:
Assuming the question is to find the time
the ball is in air, we can use the following equation:

Where:
is the final height of the ball
is the initial height of the ball
is the initial velocity of the ball
is the time the ball is in air
is the acceleration due to gravity

Then:


Multiplying both sides of the equation by -1 and rearranging:

At this point we have a quadratic equation of the form
, which can be solved with the following formula:
Where:
Substituting the known values:
Solving the equation and choosing the positive result we have:
This is the time the ball is in air
There is still air inside of a house, which is pushing the roof upwards, so the forces are equal and the roof is not crushed.