Answer:
<em>faster and at a higher luminosity and temperature.</em>
Explanation:
A protostar looks like a star but its core is not yet hot enough for fusion to take place. The luminosity comes exclusively from the heating of the protostar as it contracts. Protostars are usually surrounded by dust, which blocks the light that they emit, so they are difficult to observe in the visible spectrum.
A protostar becomes a main sequence star when its core temperature exceeds 10 million K. This is the temperature needed for hydrogen fusion to operate efficiently.
Stars above about 200 solar masses (Higher mass) generate power so furiously that gravity cannot contain their internal pressure. These stars blow themselves apart and do not exist for long if at all. A protostar with less than 0.08 solar masses never reaches the 10 million K temperature needed for efficient hydrogen fusion. These result in “failed stars” called brown dwarfs which radiate mainly in the infrared and look deep red in color. They are very dim and difficult to detect, but there might be many of them, and in fact they might outnumber other stars in the universe.
That is why higher mass protostars enter the main sequence at a <em>faster and at a higher luminosity and temperature.</em>
why did my answer get deleted??
oh yeah i put a link on there- oopsies.
I wont this time!
I got 30!
Answer:
Explanation:
for baseball
(a) Let the mass of the baseball is m.
radius of baseball is r.
Total kinetic energy of the baseball, T = rotational kinetic energy + translational kinetic energy
T = 0.5 Iω² + 0.5 mv²
Where, I be the moment of inertia and ω be the angular speed.
ω = v/r
T = 0.5 x 2/3 mr² x v²/r² + 0.5 mv²
T = 0.83 mv²
According to the conservation of energy, the total kinetic energy at the bottom is equal to the total potential energy at the top.
m g h = 0.83 mv²
where, h be the height of the top of the hill.
9.8 x h = 0.83 x 6.8 x 6.8
h = 3.93 m
(b) Let the velocity of juice can is v'.
moment of inertia of the juice can = 1/2mr²
So, total kinetic energy
T = 0.5 x I x ω² + 0.5 mv²
T = 0.5 x 0.5 x m x r² x v²/r² + 0.5 mv²
m g h = 0.75 mv²
9.8 x 3.93 = 0.75 v²
v = 7.2 m/s
Answer:
d. We can calculate it by applying Newton's version of Kepler's third law
Explanation:
The measurements of a Star like the Sun have several problems, the first one is distance, but the most important is the temperature since as we get closer all the instruments will melt. This is why all measurements must be indirect because of the effects that these variables create on nearby bodies.
Kepler's laws are deduced from Newton's law of universal gravitation, in these laws the mass of the Sun affects the orbit of the planets since it creates a force of attraction, if measured the orbit and the time it takes to travel it we can know the centripetal acceleration and with it knows the force, from where we clear the mass of the son.
Let's review the statements of the exercise
.a) False. We don't have good enough models for this calculation
.b) False. The size of the sun is very difficult to measure because it is a mass of gas, in addition the density changes strongly with depth
.c) False. The amount of light that comes out of the sun is not all the light produced and is due to quantum effects where the mass of the sun is not taken into account
.d) True. This method has been used to calculate the mass of the sun and the other planets since the variable distance and time are easily measured from Earth
Correct answer is D