Each
ion contains three extra protons. Hence, the extra charge on each
=
C
Total charge = 0.035 pC
Total charge (Q) =
C
Let the number of
ions be n.
According to question:



n = 72917
Hence, the total number of ions needed to be transferred is 72917
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation:
It would have to be 36,719 Km high in order to be to be in geosynchronous orbit.
To find the answer, we need to know about the third law of Kepler.
<h3>What's the Kepler's third law?</h3>
- It states that the square of the time period of orbiting planet or satellite is directly proportional to the cube of the radius of the orbit.
- Mathematically, T²∝a³
<h3>What's the radius of geosynchronous orbit, if the time period and altitude of ISS are 90 minutes and 409 km respectively?</h3>
- The time period of geosynchronous orbit is 24 hours or 1440 minutes.
- As the Earth's radius is 6371 Km, so radius of the ISS orbit= 6371km + 409 km = 6780km.
- If T1 and T2 are time period of geosynchronous orbit and ISS orbit respectively, a1 and a2 are radius of geosynchronous orbit and ISS orbit, as per third law of Kepler, (T1/T2)² = (a1/a2)³
- a1= (T1/T2)⅔×a2
= (1440/90)⅔×6780
= 43,090 km
- Altitude of geosynchronous orbit = 43,090 - 6371= 36,719 km
Thus, we can conclude that the altitude of geosynchronous orbit is 36,719km.
Learn more about the Kepler's third law here:
brainly.com/question/16705471
#SPJ4