1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLEGan [10]
2 years ago
10

Which pair does NOT have an electric force between them?.

Physics
1 answer:
viva [34]2 years ago
5 0

Two neutral objects will not have any electric force of attraction or repulsion between them.

<h3>What is the condition for the electric force between two objects?</h3>

As we know from the electrostatics that whenever there are two charges having a positive charge on one and a negative on the other will attract each other

similarly, if they are having like charges which are both of them having positive or both of them having a negative charge then there will be a force of repulsion between them.

But if both of them or even one of them is neutral then there will not be any electric force between them.

Thus neutral objects will not have any electric force of attraction or repulsion between them.

To know more about the nature of charged particles follow

brainly.com/question/22492496

You might be interested in
Air as an ideal gas enters a diffuser operating at steady state at 5 bar, 280 K with a velocity of 510 m/s. The exit velocity is
Nataly [62]

Answer:

Explanation:

Calculating the exit temperature for K = 1.4

The value of c_p is determined via the expression:

c_p = \frac{KR}{K_1}

where ;

R = universal gas constant = \frac{8.314 \ J}{28.97 \ kg.K}

k = constant = 1.4

c_p = \frac{1.4(\frac{8.314}{28.97} )}{1.4 -1}

c_p= 1.004 \ kJ/kg.K

The derived expression from mass and energy rate balances reduce for the isothermal process of ideal gas is :

0=(h_1-h_2)+\frac{(v_1^2-v_2^2)}{2}     ------ equation(1)

we can rewrite the above equation as :

0 = c_p(T_1-T_2)+ \frac{(v_1^2-v_2^2)}{2}

T_2 =T_1+ \frac{(v_1^2-v_2^2)}{2 c_p}

where:

T_1  = 280 K \\ \\ v_1 = 510 m/s \\ \\ v_2 = 120 m/s \\ \\c_p = 1.0004 \ kJ/kg.K

T_2= 280+\frac{((510)^2-(120)^2)}{2(1.004)} *\frac{1}{10^3}

T_2 = 402.36 \ K

Thus, the exit temperature = 402.36 K

The exit pressure is determined by using the relation:\frac{T_2}{T_1} = (\frac{P_2}{P_1})^\frac{k}{k-1}

P_2=P_1(\frac{T_2}{T_1})^\frac{k}{k-1}

P_2 = 5 (\frac{402.36}{280} )^\frac{1.4}{1.4-1}

P_2 = 17.79 \ bar

Therefore, the exit pressure is 17.79 bar

7 0
3 years ago
Using Rayleigh's criterion, calculate the diameter of an earth-based telescope that gives this resolution with 700 nm light.
pogonyaev

Complete Question

Due to blurring caused by atmospheric distortion, the best resolution that can be obtained by a normal, earth-based, visible-light telescope is about 0.3 arcsecond (there are 60 arcminutes in a degree and 60 arcseconds in an arcminute).Using Rayleigh's criterion, calculate the diameter of an earth-based telescope that gives this resolution with 700 nm light

Answer:

The diameter is  D = 0.59 \  m    

Explanation:

From the question we are told that

      The best resolution is  \theta  =  0.3 \  arcsecond

       The  wavelength is  \lambda  =  700 \  nm =  700 *10^{-9 } \  m

       

Generally the

         1 arcminute  = >  60 arcseconds

=>      x arcminute =>   0.3 arcsecond

So

       x =  \frac{0.3}{60 }

=>    x = 0.005 \  arcminutes

Now

         60 arcminutes  =>  1 degree

          0.005 arcminutes = >  z degrees  

=>       z =  \frac{0.005}{60 }

=>      z =  8.333 *10^{-5}  \ degree

Converting to radian  

           \theta  = z =  8.333 *10^{-5}  * 0.01745 = 1.454 *10^{-6} \  radian

Generally the resolution is mathematically represented as

            \theta  =  \frac{1.22 *  \lambda  }{ D}

=>    D =  \frac{1.22 * \lambda }{\theta }

=>     D =  \frac{1.22 * 700 *10^{-9} }{ 1.454 *10^{-6} }    

=>     D = 0.59 \  m    

4 0
3 years ago
Please help on this one?
diamong [38]

Answer:

ITS C

Explanation:

7 0
3 years ago
If you push a crate across a factory floor at constant speed in a constant direction, what is the magnitude of the force of fric
poizon [28]

Answer:

The magnitude of the force of friction equals the magnitude of my push

Explanation:

Since the crate moves at a constant speed, there is no net acceleration and thus, my push is balanced by the frictional force on the crate. So, the magnitude of the force of friction equals the magnitude of my push.

Let F = push and f = frictional force and f' = net force

F - f = f' since the crate moves at constant speed, acceleration is zero and thus f' = ma = m (0) = 0

So, F - f = 0

Thus, F = f

So, the magnitude of the force of friction equals the magnitude of my push.

3 0
3 years ago
What are the musical instrument of liturgy and devitional music.<br><br><br>help me plssss​
kaheart [24]

Answer:  A hymn which accompanies religious observances and rituals.   And others like guitar, violin, flute, harp and the organ

Explanation: Gradually people instructed the natives not only in singing but also in playing various instruments like guitar, violin, flute, harp and later on, the organ.

5 0
2 years ago
Other questions:
  • If you pay him $200 up front, Freddie promises to paint your garage. But you'd be crazy to pay him anything up front because Fre
    5·1 answer
  • Homework help asap!!
    11·1 answer
  • Which of the following is most likely to be the best conductor of electricity?
    12·1 answer
  • the maximum displacement of a particle, within a wave, above or below its equilibrium position, is called__________
    5·2 answers
  • Two point charges of equal magnitude (and opposite sign) are 7.5 cm apart. At the midpoint of the line connecting them, their co
    9·1 answer
  • If a CD player uses a 12-V battery and draws 2.0 amps of current, how much power does it use?
    5·1 answer
  • The main difference between speed and velocity involves
    13·2 answers
  • Two students, sitting on frictionless carts, push against each other. Both are initially at rest and the mass of student 1 and t
    8·1 answer
  • Which statement describes why energy is released in a nuclear fission reaction based on mass-energy equivalence?
    14·1 answer
  • Sarah observed that different kinds and amounts of fossils were present in a cliff behind her house. She wondered if changes in
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!