Answer:
a) 4.98m/s²
b) 481.66N
Explanation:
a) Using the Newtons second law of motion
![\sum F_x = ma_x\\F_m - F_f = ma_x\\Wsin \theta - F_f = ma_x\\mgsin \theta - F_f = ma_x\\](https://tex.z-dn.net/?f=%5Csum%20F_x%20%3D%20ma_x%5C%5CF_m%20-%20F_f%20%3D%20ma_x%5C%5CWsin%20%5Ctheta%20-%20F_f%20%3D%20ma_x%5C%5Cmgsin%20%5Ctheta%20-%20F_f%20%3D%20ma_x%5C%5C)
m is the mass of the object
g is the acceleration due to gravity
Fm is the moving force acting along the plane
Ff is the frictional force opposing the moving froce
a is the acceleration of the skier
Given
m = 60kg
g = 9.8m/s²
= 35°
Ff = 38.5N
Required
acceleration of the skier a
Substituting into the formula;
![60(9.8)sin 35^0 - 38.5 = 60a\\588sin35^0 - 38.5 = 60a\\337.26 - 38.5 = 60a\\298.76 = 60a\\a = 298.76/60\\a = 4.98m/s^2\\](https://tex.z-dn.net/?f=60%289.8%29sin%2035%5E0%20-%2038.5%20%3D%2060a%5C%5C588sin35%5E0%20-%2038.5%20%3D%2060a%5C%5C337.26%20-%2038.5%20%3D%2060a%5C%5C298.76%20%3D%2060a%5C%5Ca%20%3D%20298.76%2F60%5C%5Ca%20%3D%204.98m%2Fs%5E2%5C%5C)
Hence the acceleration of the skier is 4.98m/s²
b) The normal force on the skier is expressed as;
N = Wcosθ
N = mgcosθ
N = 60(9.8)cos 35°
N = 588cos 35°
N = 481.66N
Hence the normal force on the skier is 481.66N