Answer:
period 6
Explanation:
If the lanthanides were inserted into the periodic table, they would go into periodic 6.
Their atomic number is between 57 - 71 from element lanthanum to lutetium.
- The elements in this period are 15 in number.
- They are also know as elements in the f-block.
The elements that makes up the series are:
Lanthanum
Cerium
Praseodymium
Neodymium
Promethium
Samarium
Europium
Gadolinium
Terbium
Dysprosium
Holmium
Erbium
Thulium
Ytterbium
Lutetium
A gas made up of atoms escapes through a pinhole 0.225times as fast as gas. Write the chemical formula of the gas.
Answer:
Explanation:
To solve this problem, we must apply Graham's law of diffusion. This law states that "the rate of diffusion or effusion of a gas is inversely proportional to the square root of its molecular mass at constant temperature and pressure".
Mathematically;

r₁ is the rate of diffusion of gas 1
r₂ is the rate of diffusion of gas 2
m₁ is the molar mass of gas 1
m₂ is the molar mass of gas 2
let gas 2 be the given H₂;
molar mass of H₂ = 2 x 1 = 2gmol⁻¹
rate of diffusion is 0.225;
i .e r1/r2 = 0.225
0.225 = √2 / √ m₁
0.225 = 1.414 / √ m₁
√ m₁ = 6.3
m₁ = 6.3² = 39.5g/mol
The gas is likely Argon since argon has similar molecular mass
13.4 billion years is 3 times of the half-life, 4.47 billion years. So the Uranium-238 will go through three times of half decay. So the remain percentage will be 50%*50%*50%=12.5%.
Answer:
Radium-226 is a radioactive decay product in the uranium-238 decay series and is the precursor of radon-222. Radium-228 is a radioactive decay product in the thorium-232 decay series. Both isotopes give rise to many additional short-lived radionuclides, resulting in a wide spectrum of alpha, beta and gamma radiations.