Answer:
Atoms are often more stable when bonded to other atoms
Explanation:
Like for example let's say ionic bonds..... Since one atom has to lose specific electrons to be stable and the other needs the electrons from the other atom to be stable.....
Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
Answer:
While both handwashing and hand sanitizing are good hygiene practices, each has its ... The difference between soaps and detergents lies in their ingredients and how they are made. ... Before handling clean equipment and serving utensils;; When changing tasks and switching ... Do not wash or rub it off on your clothes.
Explanation:
Tarnish is Ag2S-silver sulfide and the oxidation state of silver is +1
Answer:
The blood will contain 750 grams of O2
Explanation:
Volume of blood in the human body = 15 deciliters
Mass of hemoglobin per deciliter of blood = 15 grams
Mass of hemoglobin in 50 deciliters of blood = 50×15 = 750 grams
Since all the hemoglobin molecules are saturated with O2, mass of O2 in the blood will be the same as mass of hemoglobin molecules in the blood.
Therefore, mass of O2 in the blood is 750 grams