The magnitude of this vector is 15
A vector is a quantity or phenomenon that has two independent properties: magnitude and direction. The term also denotes the mathematical or geometrical representation of such a quantity. Examples of vectors in nature are velocity, momentum, force, electromagnetic fields, and weight.
The magnitude of a vector formula is used to calculate the length for a given vector (say v) and is denoted as |v|. So basically, this quantity is the length between the initial point and endpoint of the vector.
Let vector be = a
component of vector in x direction = 10 i
component of vector in y direction = 10 j
component of vector in z direction = 5 z
vector a = 10 i + 10 j + 5 z
magnitude of vector a = |a| =
= 15
To learn more about vector here
brainly.com/question/24256726
#SPJ4
Answer:
1) R1 + ((R2 × R3)/(R2 + R3))
2) 0.5 A
3) 3.6 V
Explanation:
1) We can see that resistors R2 and R3 are in parallel.
Formula for sum of parallel resistors; 1/Rt = 1/R2 + 1/R3
Making Rt the subject gives;
Rt = (R2 × R3)/(R2 + R3)
Now, Resistor R1 is in series with this sum of R2 and R3. Thus;
Total resistance of circuit = R1 + ((R2 × R3)/(R2 + R3))
2) R_total = R1 + ((R2 × R3)/(R2 + R3))
We are given;
R1 = 7.2 Ω
R2 = 8 Ω
R3 = 12 Ω
R_total = 7.2 + ((8 × 12)/(8 + 12))
R_total = 7.2 + 4.8
R_total = 12 Ω
Formula for current is;
I = V/R
I = 6/12
I = 0.5 A
3) since current through the circuit is 0.5 and R1 is 7.2 Ω.
Thus, potential difference through R1 is;
V = IR = 0.5 × 7.2 = 3.6 V
Answer:
117.6°
Explanation:
The vertical component of a force directed at some angle α from the vertical is ...
F·cos(α)
We want the vertical components of the wolf's force (Fw) and Red's force (Fr) to total zero. So for some angle from vertical α, Red's force will satisfy ...
Fw·cos(25°) + Fr·cos(α) = 0
cos(α) = -Fw/Fr·cos(25°) ≈ -(6.4 N)/(12.5 N)·0.906308 ≈ -0.464030
α ≈ arccos(-0.464030) ≈ 117.6°
Red was pulling at an angle of about 117.6° from the vertical.
_____
<em>Additional comment</em>
That's about 27.6° below the horizontal.
speed increases with temp maybe
The correct answer would be C. it moves at a constant speed. The troposphere(the layer our weather is in) is not nearly high enough for gravity to be different at different altitudes.