Correct answer is <span>Fuels do not have to be purchased to generate power.</span>
Answer:
D. Atoms are like solid balls
Explanation:
John Dalton proposed that all matter is composed of very small things which he called atoms. This was not a completely new concept as the ancient Greeks (notably Democritus) had proposed that all matter is composed of small, indivisible (cannot be divided) objects. When Dalton proposed his model electrons and the nucleus were unknown.
Answer:
2. The metal would lose one electrons and the non metal would gain one electrons
Explanation:
An atom of a certain element reacts with the atoms of other elements in order to fullfill its outermost shell (called valence shell).
We notice the following:
- The elements in Group 1 (which are metals) have only 1 electron in their valence shell
- The elements in Group 17 (which are non-metals) have 1 vacancy (lack of electron) in their valence shell
This means that in order for both an atom of group 1 and an atom of group 17 to fullfill the valence shell, they have to:
- The atom in group 1 has to give away its only electron of the valence shell
- The atom in group 17 has to gain one electron in order to fullfill the shell
Therefore, the correct option is
2. The metal would lose one electrons and the non metal would gain one electrons
Glycolysis--The breakdown of a glucose molecule into two three-carbon pieces called pyruvate. You will notice that very little ATP is produced in this step and no oxygen is required. ... This step is also where other molecules besides glucose may be fed into the cell respiration<span> process, especially lipids.</span>
The rate of disappearance of chlorine gas : 0.2 mol/dm³
<h3>Further explanation</h3>
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
For reaction :

The rate reaction :
![\tt -\dfrac{1}{a}\dfrac{d[-A]}{dt}= -\dfrac{1}{b}\dfrac{d[-B]}{dt}=\dfrac{1}{c}\dfrac{d[C]}{dt}=\dfrac{1}{d}\dfrac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctt%20-%5Cdfrac%7B1%7D%7Ba%7D%5Cdfrac%7Bd%5B-A%5D%7D%7Bdt%7D%3D%20-%5Cdfrac%7B1%7D%7Bb%7D%5Cdfrac%7Bd%5B-B%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7Bc%7D%5Cdfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7Bd%7D%5Cdfrac%7Bd%5BD%5D%7D%7Bdt%7D)
Reaction for formation CCl₄ :
<em>CH₄+4Cl₂⇒CCl₄+4HCl</em>
<em />
From equation, rate of reaction = rate of formation CCl₄ = 0.05 mol/dm³
Rate of formation of CCl₄ = reaction rate x coefficient of CCCl₄
0.05 mol/dm³ = reaction rate x 1⇒reaction rate = 0.05 mol/dm³
The rate of disappearance of chlorine gas (Cl₂) :
Rate of disappearance of Cl₂ = reaction rate x coefficient of Cl₂
Rate of disappearance of Cl₂ = 0.05 x 4 = 0.2 mol/dm³