Producers are the foundation of every food web in every ecosystem—they occupy what is called the first tropic level of the food web. The second trophic level consists of primary consumers—the herbivores, or animals that eat plants. At the top level are secondary consumers—the carnivores and omnivores who eat the primary consumers. Ultimately, decomposers break down dead organisms, returning vital nutrients to the soil, and restarting the cycle. Another name for producers is autotrophs, which means “self-nourishers.” There are two kinds of autotrophs. The most common are photoautotrophs—producers that carry out photosynthesis. Trees, grasses, and shrubs are the most important terrestrial photoautotrophs. In most aquatic ecosystems, including lakes and oceans, algae are the most important photoautotrophs.
<span>c. About one month
To answer this question, TAKE A LOOK AT THE GRAPH. If you do so, you'll see that the first peak for prey happens at about 2.5 months. The first peak for predators happens at about 3.5 months, or in other words, lags by about a month. Looking at the second peak for prey and predator you see the figures of 8 months and 9 months. Another lag of about 1 month. Looking at the third peak, you see a bit past 13 months and a bit past 14 months. Another one month lag. Therefore the answer is "c. About one month"</span>
Answer:
The correct option is: c. 15
Explanation:
Phosphorous is a chemical element which belongs to the group 15 of the periodic table and has atomic number 15. It is a highly reactive non-metal of the p-group.
Since, atomic number of an atom is the number of electrons and number of protons for neutral atoms.
So, the number of protons = number of electrons = 15
The atomic mass is obtained by adding the number of neutrons and the protons.
So, number of neutrons + number of protons = 30
So, number of neutrons + 15 = 30
Therefore, the number of neutrons in ³⁰P = 15
Answer:
(i)The mole fractions are :
(ii)
(iii)ΔG = 1.974kJ
Explanation:
The given equation is :
⇄
Let
be the number of moles dissociated per mole of 
Thus ,
<em>The initial number of moles of :</em>
+
⇄
+ 
And finally the number of moles of ![C[tex] is 0.9Thus ,[tex]3\alpha=0.9\\\alpha=0.3[tex]The final number of moles of:[tex]A = 1-2\alpha=1-2*0.3=0.4mol[tex] [tex]B=2(1-\alpha)=2(1-0.3)=1.4mol[tex][tex]D=1+2\alpha=1+2*0.3=1.6mol[tex]Thus , total number of moles are : 0.4+1.4+0.9+1.6=4.3(i)The mole fractions are : [tex]A=\frac{0.4}{4.3} \\=0.0930](https://tex.z-dn.net/?f=C%5Btex%5D%20is%200.9%3C%2Fp%3E%3Cp%3EThus%20%2C%3C%2Fp%3E%3Cp%3E%5Btex%5D3%5Calpha%3D0.9%5C%5C%5Calpha%3D0.3%5Btex%5D%3C%2Fp%3E%3Cp%3E%3Cem%3E%3Cstrong%3EThe%20final%20number%20of%20moles%20of%3A%3C%2Fstrong%3E%3C%2Fem%3E%3C%2Fp%3E%3Cul%3E%3Cli%3E%3Cem%3E%3Cstrong%3E%5Btex%5DA%20%3D%201-2%5Calpha%3D1-2%2A0.3%3D0.4mol%5Btex%5D%20%3C%2Fstrong%3E%3C%2Fem%3E%3C%2Fli%3E%3C%2Ful%3E%3Cul%3E%3Cli%3E%3Cem%3E%3Cstrong%3E%5Btex%5DB%3D2%281-%5Calpha%29%3D2%281-0.3%29%3D1.4mol%5Btex%5D%3C%2Fstrong%3E%3C%2Fem%3E%3C%2Fli%3E%3C%2Ful%3E%3Cul%3E%3Cli%3E%3Cem%3E%3Cstrong%3E%5Btex%5DD%3D1%2B2%5Calpha%3D1%2B2%2A0.3%3D1.6mol%5Btex%5D%3C%2Fstrong%3E%3C%2Fem%3E%3C%2Fli%3E%3C%2Ful%3E%3Cp%3EThus%20%2C%20total%20number%20of%20moles%20are%20%3A%200.4%2B1.4%2B0.9%2B1.6%3D4.3%3C%2Fp%3E%3Cp%3E%3Cstrong%3E%28i%29The%20mole%20fractions%20are%20%3A%20%3C%2Fstrong%3E%3C%2Fp%3E%3Cul%3E%3Cli%3E%3Cstrong%3E%5Btex%5DA%3D%5Cfrac%7B0.4%7D%7B4.3%7D%20%5C%5C%3D0.0930)
(ii)

Where ,
are the partial pressures of A,B,C,D respectively.
Total pressure = 1 bar .
∴
<em>
</em>
<em>
</em>
<em>
</em>
<em>
</em>

(iii)
Δ
ΔG = 
Answer: Option (B) is the correct answer.
Explanation:
A change which brings change in composition of atoms of a substance to result in the formation of new substances is known as a chemical change.
Therefore, in a chemical change new substances are formed which have different properties as compared to their reactants.
For example, 
Thus, we can conclude that during all chemical changes atoms rearrange to form new substances.