Answer:
initial velocity is v = 4.95 m / s
Explanation:
To solve this exercise we use the projectile launch ratios, when the block leaves the hill its speed is horizontal, let's find the time it takes to fall to the other point.
Initial vertical velocity is zero
y = y₀ + v_{oy} t - ½ g t²
y-y₀ = 0 -1/2 g t²
t = 
calculate
t =
t = 2.02 s
with this time we can substitute in the horizontal displacement equation
x = v₀ₓ t
v₀ₓ = x / t
suppose that the distance between the two points is x = 10 m
v₀ₓ = 10 / 2.02
v₀ₓ = 4.95 m / s
initial velocity is v = 4.95 m / s
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
We know from the Coulomb's Law that, Coulomb's force is directly proportional to the product of two charges q1 and q2 and inversely proportional to the square of the radius between them.
So,
F = 
Now, we are asked to get the greatest force. So, in order to do that, product of the charges must be greatest because the force and product of charges are directly proportional.
Let's suppose, q1 = q
So,
if q1 = q
then
q2 = Q-q
Product of Charges = q1 x q2
Now, it is:
Product of Charges = q x (Q-q)
So,
Product of Charges = qQ - 
And the expression qQ -
is clearly a quadratic expression. And clearly its roots are 0 and Q.
So, the highest value of the quadratic equation will be surely at mid-point between the two roots 0 and Q.
So, the midpoint is:
q =
q = Q/2 and it is the highest value of each charge in order to get the greatest force.
Explanation:
A wave having a frequency of 200 Hz means that 200 such waves pass through a point per second.
Answer:
c) cubic centimetre is it's answer..
Body works like a computer whenever there is any problem it warns you and those warnings are termed as symptoms. Of the body doesn't show symptoms we won't be able to detect the problem in our body.