Answer:
a) puck is subjected to both the forces of the hockey sticks in a horizontal direction,
b)the puck does not move since the sum of the forces is zero
c) changing the magnitude or direction of its applied force
Explanation:
a) The puck is subjected to both the forces of the hockey sticks in a horizontal direction, these forces are of equal magnitude and opposite direction since the puck is at rest.
In the direction of the y-axis (perpendicular to the ice) you have the weight of the disk and the normal to this weight that are also in equilibrium.
b) the puck does not move since the sum of the forces is zero, which implies that the forces of the hockey sticks are of equal magnitude and opposite direction.
c) the player has several ways to make the puck move
* slightly changing the angle of the club and therefore the direction of the force, in this case the disc comes out in the direction of this component
* inclined the stick slightly so that the force has a vertical component and the puck jumps in this direction
* Increasing the magnitude of the force so that the puck comes out in the opposite direction to the player
* The worst case, decreasing its force to zero and the disk comes out in its direction by the other force that had the same magnitude.
Answer:
<em>I = 0.75 Amp</em>
Explanation:
<u>Ohm's Law</u>
Ohm's law states that the current (I) through a conductor between two points is directly proportional to the voltage (V) across the two points. The constant of proportionality is called the Resistance (R) of the conductor.
The formula can be expressed as:
V = I.R
The intensity of the current through a resistor can be calculated by solving the equation for I:

A flashlight bulb is an example of a resistor with the specific task to emit light when it's hot enough.
The potential difference (or voltage) is V=6 V and the resistance is R=8Ω, thus the current is:

I = 0.75 Amp
Explanation:
Mass and energy are closely related. Due to mass–energy equivalence, any object that has mass when stationary (called rest mass) also has an equivalent amount of energy whose form is called rest energy, and any additional energy (of any form) acquired by the object above that rest energy will increase the object's total mass just as it increases its total energy. For example, after heating an object, its increase in energy could be measured as a small increase in mass, with a sensitive enough scale.
Answer:exactly 28200 meters
Explanation: