Answer:
While traveling downhill, the car’s potential is <u>increasing</u> and kinetic energy is <u>decreasing</u>
Explanation:
hope this helps!
Answer:
Saturn's differential rotation will cause the length of a day measures to be longer by 0.4 hours
Explanation:
Differential rotation occurs due to the difference in angular velocities of an object as we move along the latitude of the or as we move into different depth of the object, indicating the observed object is in a fluid form
Saturn made almost completely of gas and has differential motion given as follows
Rotation at the equator = 10 hours 14 minutes
Rotation at high altitude = 10 hours 38 minutes
Therefore;
The differential rotation = 10 hours 38 minutes - 10 hours 14 minutes
The differential rotation = 24 minutes = 24 minutes × 1 hour/(60 minutes) = 0.4 hours
The differential rotation = 0.4 hours
Therefore, the measured day at the higher altitude will be 0.4 longer than at the equator.
Frequency (f) = 500 hz (SI)
Velocity (V) = 1250 m/s (SI)
Wavelength (Lambda) = ? meters

The distance covered on the floor after leaving the ramp is the dependent variable.
- As a result of the marble's size, the substance it is constructed of, and the angle at which it is placed onto the ground, the distance it rolls varies.
- Therefore, the angle at which the marble is released onto the ground, the type of material used to make the stone, or its size can all be considered independent variables.
<h3>What is Independent variable?</h3>
- There are independent and dependent variables in every experiment.
- A variable is considered independent if its change is not influenced by the change in another variable or factor.
<h3>What is Dependent variable?</h3>
In any experiment, the dependent variable must be measured or determined, and it must change as the independent variable does.
Learn more about independent and dependent variable here:
brainly.com/question/1479694
#SPJ4
Answer:
True
Explanation:
Pressure is defined as:

where
F is the magnitude of the force perpendicular to the surface
A is the surface
Therefore, pressure is inversely proportional to the area of the surface:

this means that, assuming that the forces in the two situations (which have same magnitude) are both applied perpendicular to the surface, the force exerted over the smaller area will exert a greater pressure. Hence, the statement"
<em>"A force acting over a large area will exert less pressure per square inch than the same force acting over a smaller area"</em>
is true.