<span>So we want to know which statement is true for the body of mass m=2000kg that is lifted to a height of h=15m in t=15 s. Lets calculate each of the following: Gravity force on the body is F=m*g=2000*9.81=19620 N so a is FALSE. Potential energy of the body when it is lifted to the height of 15 m is Ep=m*g*h=2000*9.81*15=294300 J so b is FALSE. Work to lift the body is: W=Fg*h=2000*9.81*15= Ep=294300 J so c is FALSE. Power P=W/t=294300/15=19620 W So d is TRUE. </span>
Answer:
1.6 m/s
Explanation:
First you need to find the momentums of each disc by multiplying their velocities with mass.
disc 1: 7*1= 7 kg m/s
disc 2: 1*9= 9 kg m/s
Second, you need to find the total momentum of the system by adding the momentums of each sphere.
9+7= 16 kg m/s
Because momentum is conserved, this is equal to the momentum of the composite body.
Finally, to find the composite body's velocity, divide its total momentum by its mass. This is because mass*velocity=momentum
16/10=1.6
The velocity of the composite body is 1.6 m/s.
Answer:
96%
Explanation:
To find the values of the motor efficiency you use the following formula:

P_o: output power = 864J/0.5min=864J/30s=28.8W
P_i: input power = I*V = (3A)(12V) = 36W
By replacing this values you obtain:

hence, the motor efficiency is about 96%
traslation:
Pentru a găsi valorile eficienței motorului, utilizați următoarea formulă:
P_o: putere de ieșire = 864J / 0.5min = 864J / 30s = 28.8W
P_i: putere de intrare = I * V = (3A) (12V) = 36W
Înlocuind aceste valori obțineți:
prin urmare, eficiența motorului este de aproximativ 96%